|
[1]
|
Choi, A.M., Ryter, S.W. and Levine, B. (2013) Autophagy in Human Health and Disease. The New England Journal of Medicine, 368, 651-662. [Google Scholar] [CrossRef]
|
|
[2]
|
Mizushima, N. and Komatsu, M. (2011) Autophagy: Renovation of Cells and Tissues. Cell, 147, 728-741. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Kroemer, G., Mariño, G. and Levine, B. (2010) Autophagy and the Integrated Stress Response. Molecular Cell, 40, 280-293. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Yang, X. and Bassham, D.C. (2015) New Insight into the Mechanism and Function of Autophagy in Plant Cells. International Review of Cell and Molecular Biology, 320, 1-40. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Marshall, R.S. and Vierstra, R.D. (2018) Autophagy: The Master of Bulk and Selective Recycling. Annual Review of Plant Biology, 69, 173-208. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Choi, Y., Bowman, J.W. and Jung, J.U. (2018) Autophagy during Viral Infection—A Double-Edged Sword. Nature Reviews Microbiology, 16, 341-354. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Avin-Wittenberg, T. (2019) Autophagy and Its Role in Plant Abiotic Stress Management. Plant, Cell & Environment, 42, 1045-1053. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Michaeli, S., Galili, G., Genschik, P., et al. (2016) Autophagy in Plants—What’s New on the Menu? Trends in Plant Science, 21, 134-144. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Liu, Y. and Bassham, D.C. (2012) Autophagy: Pathways for Self-Eating in Plant Cells. Annual Review of Plant Biology, 63, 215-237. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Li, F. and Vierstra, R.D. (2012) Autophagy: A Multifaceted Intracellular System for Bulk and Selective Recycling. Trends in Plant Science, 17, 526-537. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Levine, B. and Kroemer, G. (2019) Biological Functions of Autophagy Genes: A Disease Perspective. Cell, 176, 11-42. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Doherty, J. and Baehrecke, E.H. (2018) Life, Death and Autophagy. Nature Cell Biology, 20, 1110-1117. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Zaffagnini, G. and Martens, S. (2016) Mechanisms of Selective Autophagy. Journal of Molecular Biology, 428, 1714- 1724. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Gatica, D., Lahiri, V. and Klionsky, D.J. (2018) Cargo Recognition and Degradation by Selective Autophagy. Nature Cell Biology, 20, 233-242. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Yang, Z. and Klionsky, D.J. (2010) Mammalian Autophagy: Core Molecular Machinery and Signaling Regulation. Current Opinion in Cell Biology, 22, 124-131. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Ylä-Anttila, P., Vihinen, H., Jokitalo, E., et al. (2009) 3D Tomography Reveals Connections between the Phagophore and Endoplasmic Reticulum. Autophagy, 5, 1180-1185. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Hayashi-Nishino, M., Fujita, N., Noda, T., et al. (2009) A Subdomain of the Endoplasmic Reticulum Forms a Cradle for Autophagosome Formation. Nature Cell Biology, 11, 1433-1437. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Yen, W.L., Shintani, T., Nair, U., et al. (2010) The Conserved Oligomeric Golgi Complex Is Involved in Double- Membrane Vesicle Formation during Autophagy. Journal of Cell Biology, 188, 101-114. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Lynch-Day, M.A., Bhandari, D., Menon, S., et al. (2010) Trs85 Directs a Ypt1 GEF, TRAPPIII, to the Phagophore to Promote Autophagy. Proceedings of the National Academy of Sciences of the United States of America, 107, 7811-7816. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
English, L., Chemali, M., Duron, J., et al. (2009) Autophagy Enhances the Presentation of Endogenous Viral Antigens on MHC Class I Molecules during HSV-1 Infection. Nature Immunology, 10, 480-487. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Hailey, D.W., Rambold, A.S., Satpute-Krishnan, P., et al. (2010) Mitochondria Supply Membranes for Autophagosome Biogenesis during Starvation. Cell, 141, 656-667. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
He, C., Song, H., Yorimitsu, T., et al. (2006) Recruitment of Atg9 to the Preautophagosomal Structure by Atg11 is Essential for Selective Autophagy in Budding Yeast. Journal of Cell Biology, 175, 925-935. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Ravikumar, B., Moreau, K., Jahreiss, L., et al. (2010) Plasma Membrane Contributes to the Formation of Pre-Autophago- somal Structures. Nature Cell Biology, 12, 747-757. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Mizushima, N. (2010) The Role of the Atg1/ULK1 Complex in Autophagy Regulation. Current Opinion in Cell Biology, 22, 132-139. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Proikas-Cezanne, T., Ruckerbauer, S., Stierhof, Y.D., et al. (2007) Human WIPI-1 Puncta-Formation: A Novel Assay to Assess Mammalian Autophagy. FEBS Letters, 581, 3396-3404. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Webber, J.L., Young, A.R. and Tooze, S.A. (2007) Atg9 Trafficking in Mammalian Cells. Autophagy, 3, 54-56. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Young, A.R., Chan, E.Y., Hu, X.W., et al. (2006) Starvation and ULK1-Dependent Cycling of Mammalian Atg9 between the TGN and Endosomes. Journal of Cell Science, 119, 3888-3900. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Liang, X.H., Jackson, S., Seaman, M., et al. (1999) Induction of Autophagy and Inhibition of Tumorigenesis by Beclin 1. Nature, 402, 672-676. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Mizushima, N., Sugita, H., Yoshimori, T., et al. (1998) A New Protein Conjugation System in Human. The Counterpart of the Yeast Apg12p Conjugation System Essential for Autophagy. Journal of Biological Chemistry, 273, 33889-33892. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Mizushima, N., Noda, T., Yoshimori, T., et al. (1998) A Protein Conjugation System Essential for Autophagy. Nature, 395, 395-398. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Ichimura, Y., Kirisako, T., Takao, T., et al. (2000) A Ubiquitin-Like System Mediates Protein Lipidation. Nature, 408, 488-492. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Kabeya, Y., Mizushima, N., Ueno, T., et al. (2000) LC3, a Mammalian Homologue of Yeast Apg8p, Is Localized in Autophagosome Membranes after Processing. The EMBO Journal, 19, 5720-5728. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Cao, W., Li, J., Yang, K., et al. (2021) An Overview of Autophagy: Mechanism, Regulation and Research Progress. Bulletin du Cancer, 108, 304-322. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Mercer, C.A., Kaliappan, A. and Dennis, P.B. (2009) A Novel, Human Atg13 Binding Protein, Atg101, Interacts with ULK1 and Is Essential for Macroautophagy. Autophagy, 5, 649-662. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Hosokawa, N., Sasaki, T., Iemura, S., et al. (2009) Atg101, a Novel Mammalian Autophagy Protein Interacting with Atg13. Autophagy, 5, 973-979. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Hosokawa, N., Hara, T., Kaizuka, T., et al. (2009) Nutrient-Dependent mTORC1 Association with the ULK1-Atg13- FIP200 Complex Required for Autophagy. Molecular Biology of the Cell, 20, 1981-1991. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Jung, C.H., Jun, C.B., Ro, S.H., et al. (2009) ULK-Atg13-FIP200 Complexes Mediate mTOR Signaling to the Autophagy Machinery. Molecular Biology of the Cell, 20, 1992-2003. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Hara, T., Takamura, A., Kishi, C., et al. (2008) FIP200, a ULK-Interacting Protein, Is Required for Autophagosome Formation in Mammalian Cells. Journal of Cell Biology, 181, 497-510. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Di Rienzo, M., Piacentini, M. and Fimia, G.M. (2019) A TRIM32-AMBRA1-ULK1 Complex Initiates the Autophagy Response in Atrophic Muscle Cells. Autophagy, 15, 1674-1676. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Raimondi, M., Cesselli, D., Di Loreto, C., et al. (2019) USP1 (Ubiquitin Specific Peptidase 1) Targets ULK1 and Regulates Its Cellular Compartmentalization and Autophagy. Autophagy, 15, 613-630. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Nazio, F., Strappazzon, F., Antonioli, M., et al. (2013) mTOR Inhibits Autophagy by Controlling ULK1 Ubiquitylation, Self-Association and Function through AMBRA1 and TRAF6. Nature Cell Biology, 15, 406-416. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Losier, T.T., Akuma, M., McKee-Muir, O.C., et al. (2019) AMPK Promotes Xenophagy through Priming of Autophagic Kinases upon Detection of Bacterial Outer Membrane Vesicles. Cell Reports, 26, 2150-2165 e2155. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Yang, M., Ismayil, A. and Liu, Y. (2020) Autophagy in Plant-Virus Interactions. Annual Review of Virology, 7, 403- 419. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Suzuki, K., Kirisako, T., Kamada, Y., et al. (2001) The Pre-Autophagosomal Structure Organized by Concerted Functions of APG Genes Is Essential for Autophagosome Formation. The EMBO Journal, 20, 5971-5981. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Noda, T., Kim, J., Huang, W.P., et al. (2000) Apg9p/Cvt7p Is an Integral Membrane Protein Required for Transport Vesicle Formation in the Cvt and Autophagy Pathways. Journal of Cell Biology, 148, 465-480. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Obara, K., Sekito, T., Niimi, K., et al. (2008) The Atg18-Atg2 Complex Is Recruited to Autophagic Membranes via Phosphatidylinositol 3-Phosphate and Exerts an Essential Function. Journal of Biological Chemistry, 283, 23972- 23980. [Google Scholar] [CrossRef]
|
|
[47]
|
Shintani, T., Suzuki, K., Kamada, Y., et al. (2001) Apg2p Functions in Autophagosome Formation on the Perivacuolar Structure. Journal of Biological Chemistry, 276, 30452-30460. [Google Scholar] [CrossRef]
|
|
[48]
|
Yen, W.L., Legakis, J.E., Nair, U., et al. (2007) Atg27 Is Required for Autophagy-Dependent Cycling of Atg9. Molecular Biology of the Cell, 18, 581-593. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Ohsumi, Y. (2001) Molecular Dissection of Autophagy: Two Ubiquitin-Like Systems. Nature Reviews Molecular Cell Biology, 2, 211-216. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Kihara, A., Noda, T., Ishihara, N., et al. (2001) Two Distinct Vps34 Phosphatidylinositol 3-Kinase Complexes Function in Autophagy and Carboxypeptidase Y Sorting in Saccharomyces cerevisiae. Journal of Cell Biology, 152, 519-530. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Mizushima, N., Yamamoto, A., Hatano, M., et al. (2001) Dissection of Autophagosome Formation Using Apg5-Deficient Mouse Embryonic Stem Cells. Journal of Cell Biology, 152, 657-668. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Kim, J., Dalton, V.M., Eggerton, K.P., et al. (1999) Apg7p/Cvt2p Is Required for the Cytoplasm-to-Vacuole Targeting, Macroautophagy, and Peroxisome Degradation Pathways. Molecular Biology of the Cell, 10, 1337-1351. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Shintani, T., Mizushima, N., Ogawa, Y., et al. (1999) Apg10p, a Novel Protein-Conjugating Enzyme Essential for Autophagy in Yeast. The EMBO Journal, 18, 5234-5241. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Tanida, I., Mizushima, N., Kiyooka, M., et al. (1999) Apg7p/Cvt2p: A Novel Protein-Activating Enzyme Essential for Autophagy. Molecular Biology of the Cell, 10, 1367-1379. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Mizushima, N., Kuma, A., Kobayashi, Y., et al. (2003) Mouse Apg16L, a Novel WD-Repeat Protein, Targets to the Autophagic Isolation Membrane with the Apg12-Apg5 Conjugate. Journal of Cell Science, 116, 1679-1688. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Kuma, A., Mizushima, N., Ishihara, N., et al. (2002) Formation of the Approximately 350-kDa Apg12-Apg5.Apg16 Multimeric Complex, Mediated by Apg16 Oligomerization, Is Essential for Autophagy in Yeast. Journal of Biological Chemistry, 277, 18619-18625. [Google Scholar] [CrossRef]
|
|
[57]
|
Mizushima, N., Noda, T. and Ohsumi, Y. (1999) Apg16p Is Required for the Function of the Apg12p-Apg5p Conjugate in the Yeast Autophagy Pathway. The EMBO Journal, 18, 3888-3896. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Thurston, T.L., Ryzhakov, G., Bloor, S., et al. (2009) The TBK1 Adaptor and Autophagy Receptor NDP52 Restricts the Proliferation of Ubiquitin-Coated Bacteria. Nature Immunology, 10, 1215-1221. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Kirkin, V., Lamark, T., Sou, Y.S., et al. (2009) A Role for NBR1 in Autophagosomal Degradation of Ubiquitinated Substrates. Molecular Cell, 33, 505-516. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Bjørkøy, G., Lamark, T., Brech, A., et al. (2005) p62/SQSTM1 Forms Protein Aggregates Degraded by Autophagy and Has a Protective Effect on Huntingtin-Induced Cell Death. Journal of Cell Biology, 171, 603-614. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Nakatogawa, H., Ichimura, Y. and Ohsumi, Y. (2007) Atg8, a Ubiquitin-Like Protein Required for Autophagosome Formation, Mediates Membrane Tethering and Hemifusion. Cell, 130, 165-178. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Mizushima, N., Yoshimori, T. and Ohsumi, Y. (2003) Role of the Apg12 Conjugation System in Mammalian Autophagy. The International Journal of Biochemistry & Cell Biology, 35, 553-561. [Google Scholar] [CrossRef]
|
|
[63]
|
Sou, Y.S., Waguri, S., Iwata, J., et al. (2008) The Atg8 Conjugation System Is Indispensable for Proper Development of Autophagic Isolation Membranes in Mice. Molecular Biology of the Cell, 19, 4762-4775. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
He, C. and Klionsky, D.J. (2009) Regulation Mechanisms and Signaling Pathways of Autophagy. Annual Review of Genetics, 43, 67-93. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Mizushima, N., Levine, B., Cuervo, A.M., et al. (2008) Autophagy Fights Disease through Cellular Self-Digestion. Nature, 451, 1069-1075. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Shi, C.S. and Kehrl, J.H. (2008) MyD88 and Trif Target Beclin 1 to Trigger Autophagy in Macrophages. Journal of Biological Chemistry, 283, 33175-33182. [Google Scholar] [CrossRef]
|
|
[67]
|
Delgado, M.A., Elmaoued, R.A., Davis, A.S., et al. (2008) Toll-Like Receptors Control Autophagy. The EMBO Journal, 27, 1110-1121. [Google Scholar] [CrossRef] [PubMed]
|
|
[68]
|
Sanjuan, M.A., Dillon, C.P., Tait, S.W., et al. (2007) Toll-Like Receptor Signalling in Macrophages Links the Autophagy Pathway to Phagocytosis. Nature, 450, 1253-1257. [Google Scholar] [CrossRef] [PubMed]
|
|
[69]
|
Xu, Y., Jagannath, C., Liu, X.D., et al. (2007) Toll-Like Receptor 4 Is a Sensor for Autophagy Associated with Innate Immunity. Immunity, 27, 135-144. [Google Scholar] [CrossRef] [PubMed]
|
|
[70]
|
Shi, C.S. and Kehrl, J.H. (2010) TRAF6 and A20 Regulate Lysine 63-Linked Ubiquitination of Beclin-1 to Control TLR4-Induced Autophagy. Science Signaling, 3, ra42. [Google Scholar] [CrossRef] [PubMed]
|
|
[71]
|
Münz, C. (2011) Macroautophagy during Innate Immune Activation. Frontiers in Microbiology, 2, Article No. 72. [Google Scholar] [CrossRef] [PubMed]
|
|
[72]
|
Liu, Y., Schiff, M., Czymmek, K., et al. (2005) Autophagy Regulates Programmed Cell Death during the Plant Innate Immune Response. Cell, 121, 567-577. [Google Scholar] [CrossRef] [PubMed]
|
|
[73]
|
Leary, A.Y., Savage, Z., Tumtas, Y., et al. (2019) Contrasting and Emerging Roles of Autophagy in Plant Immunity. Current Opinion in Plant Biology, 52, 46-53. [Google Scholar] [CrossRef] [PubMed]
|
|
[74]
|
Han, S., Wang, Y., Zheng, X., et al. (2015) Cytoplastic Glyceraldehyde-3-Phosphate Dehydrogenases Interact with ATG3 to Negatively Regulate Autophagy and Immunity in Nicotiana benthamiana. Plant Cell, 27, 1316-1331. [Google Scholar] [CrossRef] [PubMed]
|
|
[75]
|
Haxim, Y., Ismayil, A., Jia, Q., et al. (2017) Autophagy Functions as an Antiviral Mechanism against Geminiviruses in Plants. Elife, 6, e23897. [Google Scholar] [CrossRef]
|
|
[76]
|
Üstün, S., Hafrén, A. and Hofius, D. (2017) Autophagy as a Mediator of Life and Death in Plants. Current Opinion in Plant Biology, 40, 122-130. [Google Scholar] [CrossRef] [PubMed]
|
|
[77]
|
Munch, D., Rodriguez, E., Bressendorff, S., et al. (2014) Autophagy Deficiency Leads to Accumulation of Ubiquitinated Proteins, ER Stress, and Cell Death in Arabidopsis. Autophagy, 10, 1579-1587. [Google Scholar] [CrossRef] [PubMed]
|
|
[78]
|
Minina, E.A., Bozhkov, P.V. and Hofius, D. (2014) Autophagy as Initiator or Executioner of Cell Death. Trends in Plant Science, 19, 692-697. [Google Scholar] [CrossRef] [PubMed]
|
|
[79]
|
Hofius, D., Schultz-Larsen, T., Joensen, J., et al. (2009) Autophagic Components Contribute to Hypersensitive Cell Death in Arabidopsis. Cell, 137, 773-783. [Google Scholar] [CrossRef] [PubMed]
|
|
[80]
|
Kushwaha, N.K., Hafrén, A. and Hofius, D. (2019) Autophagy-Virus Interplay in Plants: From Antiviral Recognition to Proviral Manipulation. Molecular Plant Pathology, 20, 1211-1216. [Google Scholar] [CrossRef] [PubMed]
|
|
[81]
|
Hafrén, A. and Hofius, D. (2017) NBR1-Mediated Antiviral Xenophagy in Plant Immunity. Autophagy, 13, 2000-2001. [Google Scholar] [CrossRef] [PubMed]
|
|
[82]
|
Hafrén, A., Üstün, S., Hochmuth, A., et al. (2018) Turnip Mosaic Virus Counteracts Selective Autophagy of the Viral Silencing Suppressor HCpro. Plant Physiology, 176, 649-662. [Google Scholar] [CrossRef] [PubMed]
|
|
[83]
|
Hafrén, A., Lõhmus, A. and Mäkinen, K. (2015) Formation of Potato Virus A-Induced RNA Granules and Viral Translation Are Interrelated Processes Required for Optimal Virus Accumulation. PLoS Pathogens, 11, e1005314. [Google Scholar] [CrossRef] [PubMed]
|
|
[84]
|
Li, F., Zhang, C., Li, Y., et al. (2018) Beclin1 Restricts RNA Virus Infection in Plants through Suppression and Degradation of the Viral Polymerase. Nature Communications, 9, Article No. 1268. [Google Scholar] [CrossRef] [PubMed]
|
|
[85]
|
Li, F., Huang, C., Li, Z., et al. (2014) Suppression of RNA Silencing by a Plant DNA Virus Satellite Requires a Host Calmodulin-Like Protein to Repress RDR6 Expression. PLoS Pathogens, 10, e1003921. [Google Scholar] [CrossRef] [PubMed]
|
|
[86]
|
Jeon, E.J., Tadamura, K., Murakami, T., et al. (2017) rgs-CaM Detects and Counteracts Viral RNA Silencing Suppressors in Plant Immune Priming. Journal of Virology, 91, e00761-17. [Google Scholar] [CrossRef]
|
|
[87]
|
Nakahara, K.S., Masuta, C., Yamada, S., et al. (2012) Tobacco Calmodulin-Like Protein Provides Secondary Defense by Binding to and Directing Degradation of Virus RNA Silencing Suppressors. Proceedings of the National Academy of Sciences of the United States of America, 109, 10113-10118. [Google Scholar] [CrossRef] [PubMed]
|
|
[88]
|
Derrien, B., Baumberger, N., Schepetilnikov, M., et al. (2012, Degradation of the Antiviral Component ARGONAUTE1 by the Autophagy Pathway. Proceedings of the National Academy of Sciences of the United States of America, 109, 15942-15946.[CrossRef] [PubMed]
|
|
[89]
|
Cheng, X. and Wang, A. (2017) The Potyvirus Silencing Suppressor Protein VPg Mediates Degradation of SGS3 via Ubiquitination and Autophagy Pathways. Journal of Virology, 91, e01478-16. [Google Scholar] [CrossRef]
|
|
[90]
|
Li, F., Zhao, N., Li, Z., et al. (2017) A Calmodulin-Like Protein Suppresses RNA Silencing and Promotes Geminivirus Infection by Degrading SGS3 via the Autophagy Pathway in Nicotiana benthamiana. PLoS Pathogens, 13, e1006213. [Google Scholar] [CrossRef] [PubMed]
|
|
[91]
|
Hafrén, A., Macia, J.L., Love, A.J., et al. (2017) Selective Autophagy Limits Cauliflower Mosaic Virus Infection by NBR1-Mediated Targeting of Viral Capsid Protein and Particles. Proceedings of the National Academy of Sciences of the United States of America, 114, E2026-E2035. [Google Scholar] [CrossRef] [PubMed]
|
|
[92]
|
Yang, M., Zhang, Y., Xie, X., et al. (2018) Barley Stripe Mosaic Virus γb Protein Subverts Autophagy to Promote Viral Infection by Disrupting the ATG7-ATG8 Interaction. Plant Cell, 30, 1582-1595. [Google Scholar] [CrossRef] [PubMed]
|
|
[93]
|
Ruck, A., Attonito, J., Garces, K.T., et al. (2011) The Atg6/Vps30/Beclin 1 ortholog BEC-1 Mediates Endocytic Retrograde Transport in Addition to Autophagy in C. elegans. Autophagy, 7, 386-400. [Google Scholar] [CrossRef] [PubMed]
|
|
[94]
|
Dagdas, Y.F., Belhaj, K., Maqbool, A., et al. (2016) An Effector of the Irish Potato Famine Pathogen Antagonizes a Host Autophagy Cargo Receptor. eLife, 5, e10856. [Google Scholar] [CrossRef]
|
|
[95]
|
Zhou, T., Zhang, M., Gong, P., et al. (2021) Selective Autophagic Receptor NbNBR1 Prevents NbRFP1-Mediated UPS-Dependent Degradation of βC1 to Promote Geminivirus Infection. PLoS Pathog, 17, e1009956. [Google Scholar] [CrossRef] [PubMed]
|