|
[1]
|
Larsen, N., Vogensen, F.K., Van Den Berg, F.W.J., et al. (2010) Gut Microbiota in Human Adults with Type 2 Diabetes Differs from Non-Diabetic Adults. PLoS One, 5, e9085. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Yang, Q., Lin, S.L., Kwok, M.K., et al. (2018) The Roles of 27 Genera of Human Gut Microbiota in Ischemic Heart Disease, Type 2 Diabetes Mellitus, and Their Risk Factors: A Mendelian Randomization Study. American Journal of Epidemiolo-gy, 187, 1916-1922. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Gurung, M., Li, Z., You, H., et al. (2020) Role of Gut Microbiota in Type 2 Diabetes Pathophysiology. eBioMedicine, 51, 102590. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Sedighi, M., Razavi, S., Navab-Moghadam, F., et al. (2017) Comparison of Gut Microbiota in Adult Patients with Type 2 Diabetes and Healthy Individuals. Microbial Pathogenesis, 111, 362-369. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Ahmad, A., Yang, W., Chen, G., et al. (2019) Analysis of Gut Microbiota of Obese Individuals with Type 2 Diabetes and Healthy Individuals. PLoS One, 14, e0226372. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Alicic, R.Z., Rooney, M.T. and Tuttle, K.R. (2017) Diabetic Kidney Disease: Challenges, Progress, and Possibilities. Clinical Journal of the American Society of Nephrology, 12, 2032-2045. [Google Scholar] [CrossRef]
|
|
[7]
|
Miranda-Díaz, A.G., Pazarín-Villaseñor, L., Yanows-ky-Escatell, F.G., et al. (2016) Oxidative Stress in Diabetic Nephropathy with Early Chronic Kidney Disease. Journal of Diabetes Research, 2016, Article ID: 7047238. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Urushihara, M. and Kagami, S. (2017) Role of the Intrarenal Ren-in-Angiotensin System in the Progression of Renal Disease. Pediatric Nephrology, 32, 1471-1479. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Ramezani, A., Massy, Z.A., Meijers, B., et al. (2016) Role of the Gut Microbiome in Uremia: A Potential Therapeutic Target. American Journal of Kidney Diseases, 67, 483-498. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Vaziri, N.D., Wong, J., Pahl, M., et al. (2013) Chronic Kidney Disease Alters Intestinal Microbial Flora. Kidney International, 83, 308-315. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Fiaccadori, E., Cosola, C. and Sabatino, A. (2020) Targeting the Gut for Early Diagnosis, Prevention, and Cure of Diabetic Kidney Disease: Is the Phenyl Sulfate Story Another Step Forward? American Journal of Kidney Diseases, 75, 144-147. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Lu, C., Hu, Z., Wang, R., et al. (2020) Gut Microbiota Dysbiosis-Induced Activation of the Intrarenal Renin-Angiotensin System Is In-volved in Kidney Injuries in Rat Diabetic Nephropathy. Acta Pharmacologica Sinica, 41, 1111-1118. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Hu, Z.B., Lu, J., Chen, P.P., et al. (2020) Dysbiosis of Intestinal Microbiota Mediates Tubulointerstitial Injury in Diabetic Nephropathy via the Disruption of Cholesterol Homeostasis. Theranostics, 10, 2803. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Sabatino, A., Regolisti, G., Cosola, C., et al. (2017) Intestinal Microbiota in Type 2 Diabetes and Chronic Kidney Disease. Current Diabetes Reports, 17, Article No. 16. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Barrios, C., Beaumont, M., Pallister, T., et al. (2015) Gut-Microbiota-Metabolite Axis in Early Renal Function Decline. PLoS One, 10, e0134311. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Wen, X., Miao, L., Deng, Y., et al. (2017) The Influence of Age and Sex on Ocular Surface Microbiota in Healthy Adults. Investigative Ophthalmology & Visual Science, 58, 6030-6037. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Ham, B., Hwang, H.B., Jung, S.H., et al. (2018) Distribution and Di-versity of Ocular Microbial Communities in Diabetic Patients Compared with Healthy Subjects. Current Eye Research, 43, 314-324. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
St. Leger, A.J. and Caspi, R.R. (2018) Visions of Eye Commensals: The Known and the Unknown about How the Microbiome Affects Eye Disease. BioEssays, 40, 1800046. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Beli, E., Yan, Y., Moldovan, L., et al. (2018) Restructuring of the Gut Microbiome by Intermittent Fasting Prevents Retinopathy and Prolongs Survival in db/db Mice. Diabetes, 67, 1867-1879. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Haluzík, M. and Mráz, M. (2018) Intermittent Fasting and Prevention of Diabetic Retinopathy: Where Do We Go from Here? Diabetes, 67, 1745-1747. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Rowan, S. and Taylor, A. (2018) The Role of Microbiota in Retinal Dis-ease. In: Ash, J., Anderson, R., LaVail, M., Bowes Rickman, C., Hollyfield, J. and Grimm, C., Eds., Retinal Degenera-tive Diseases, Advances in Experimental Medicine and Biology, Vol. 1074, Springer, Cham, 429-435. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Hicks, C.W. and Selvin, E. (2019) Epidemiology of Peripheral Neuropathy and Lower Extremity Disease in Diabetes. Current Diabetes Reports, 19, Article No. 86. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Grasset, E. and Burcelin, R. (2019) The Gut Microbiota to the Brain Axis in the Metabolic Control. Reviews in Endocrine and Metabolic Disorders, 20, 427-438. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Chandrasekharan, B., Anitha, M., Blatt, R., et al. (2011) Colonic Motor Dysfunction in Human Diabetes Is Associated with Enteric Neuronal Loss and Increased Oxidative Stress. Neu-rogastroenterology & Motility, 23, 131-e26. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Reichardt, F., Chassaing, B., Nezami, B.G., et al. (2017) Western Diet Induces Colonic Nitrergic Myenteric Neuropathy and Dysmotility in Mice via Saturated Fatty Acid- and Lipopolysaccharide-Induced TLR4 Signalling. The Journal of Physiology, 595, 1831-1846. [Google Scholar] [CrossRef]
|
|
[26]
|
Grenham, S., Clarke, G., Cryan, J.F., et al. (2011) Brain-Gut-Microbe Communication in Health and Disease. Frontiers in Physiology, 2, 94. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Nyavor, Y., Brands, C.R., May, G., et al. (2020) High-Fat Di-et-Induced Alterations to Gut Microbiota and Gut-Derived Lipoteichoic Acid Contributes to the Development of Enteric Neuropathy. Neurogastroenterology & Motility, 32, e13838. [Google Scholar] [CrossRef] [PubMed]
|