|
[1]
|
Nombela, P., Miguel-López, B., Blanco, S., et al. (2021) MODOMICS: A Database of RNA Modification Pathways. 2021 Update. Molecular Cancer, 20, 18. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Boccaletto, P., Stefan-iak, F., Ray, A., et al. (2022) MODOMICS: A Database of RNA Modification Pathways. 2021 Update. Nucleic Acids Research, 50, 231-235. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Roundtree, I.A., Evans, M.E., Pan, T., et al. (2017) Dynamic RNA Modifications in Gene Expression Regulation. Cell, 169, 1187-1200. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Wang, T.Y., Kong, S., Tao, M., et al. (2020) The Potential Role of RNA N6-Methyladenosine in Cancer Progression. Molecular Cancer, 19, 88. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Bohnsack, K., Höbartne, C. and Bohnsack, M. (2019) Eukaryot-ic 5-methylcytosine (m5C) RNA Methyltransferases: Mechanisms, Cellular Functions, and Links to Disease. Genes, 10, 102. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Song, J., Zhai, J.J., Bian, E., et al. (2018) Transcriptome-Wide Annotation of m5C RNA Modifications Using Machine Learning. Frontiers in Plant Science, 9, Article No. 13. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Motorin, Y., Lyko, F. and Helm, M. (2009) 5-methylcytosine in RNA: Detection, Enzymatic Formation and Biological Functions. Nucleic Acids Research, 38, 1415-1430. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Frye, M., Drggoni, I., Chin, S.F., et al. (2010) Genomic Gain of 5p15 Leads to Over-Expression of Misu (NSUN2) in Breast Cancer. Cancer Letters, 289, 71-80. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Xiong, X.S., Li, X.Y., Yi, C.Q., et al. (2018) N1-methyladenosine Methylome in Messenger RNA and Non-Coding RNA. Current Opinion in Chemical Biology, 45, 179-186. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Dominissini, D., Nachtergaele, S., Sharon, M.M., et al. (2016) The Dynamic N1-Methyladenosine Methylome in Eukaryotic Messenger RNA. Nature, 530, 441-446. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Idaghdour, Y. and Hodgkinson, A. (2017) Integrated Genomic Analysis of Mitochondrial RNA Processing in Human Cancers. Genome Medicine, 9, 36. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Limbach, P.A. and Paulines, M.J. (2018) Going Global: The New Era of Mapping Modifications in RNA. WIREs RNA, 8, 1. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Cui, X.A., Liang, Z., Shen, L.S., et al. (2017) 5-Methylcytosine RNA Methylation in Arabidopsis Thaliana. Molecular Plant, 9, 13. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Hussain, S., Sajini, A.A., Blanco, S., et al. (2013) NSun2-Mediated Cytosine-5 Methylation of Vault Noncoding RNA Determines Its Processing into Regulatory Small RNAs. Cell Reports, 4, 255-261. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Haute, L.V., Lee, S.Y., McCann, B.J., et al. (2019) NSUN2 In-troduces 5-Methylcytosines in Mammalian Mitochondrial tRNAs. Nucleic Acids Research, 47, 8720-8733. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Trixl, L. and Lusser, A. (2019) The Dynamic RNA Modification 5-methylcytosine and Its Emerging Role as an Epitranscriptomic Mark. WIREs RNA, 10, 1510. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Khoddami, V. and Cairns, B.R. (2014) Transcriptome-Wide Target Profil-ing of RNA Cytosine Methyltransferases Using the Mechanism-Based Enrichment Procedure Aza-IP. Nature Protocols, 9, 337-361. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Khoddami, V. and Cairns, B.R. (2013) Identification of Direct Targets and Modified Bases of RNA Cytosine Methyltransferases. Nature Biotechnology, 31, 458-464. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Schaefer, M. (2013) RNA 5-Methylcytosine Analysis by Bisulfite Sequenc-ing. Methods in Molecular Biology, 1870, 237-248.
|
|
[20]
|
Yuan, F., Bi, Y., Paulina, S.Z., et al. (2019) Bisulfite-Free and Base-Resolution Analysis of 5-Methylcytidine and 5-hydroxymethylcytidine in RNA with Peroxotungstate. ChemComm, 55, 2328-2331. [Google Scholar] [CrossRef]
|
|
[21]
|
Schumann, U., Zhang, H.N., Sibbritt, T., et al. (2020) Multiple Links between 5-methylcytosine Content of mRNA and Translation. BMC Biology, 18, Article No. 40. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Pan, J., Huang, Z.D., Xu, Y.Q., et al. (2021) m5C RNA Meth-ylation Regulators Predict Prognosis and Regulate the Immune Microenvironment in Lung Squamous Cell Carcinoma. Frontiers in Oncology, 11, Article ID: 657466. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Yu, X., Zhang, Q.Y., Gao, F., et al. (2021) Predictive Value of m5C Regulatory Gene Expression in Pancreatic Adenocarcinoma. Scientific Reports, 11, Article No. 17529. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Blanco, S., Dietmann, S., Flores, J.V., et al. (2014) Aberrant Methylation of tRNAs Links Cellular Stress to Neuro-Developmental Disorders. EMBO Journal, 33, 2020-2039. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Ivanov, P., Emara, M.M., Villen, J., et al. (2011) Angiogen-in-Induced tRNA Fragments Inhibit Translation Initiation. Molecular Cell, 43, 613-623. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Blanco, S., Bandiera, R., Popis, M., et al. (2016) Stem Cell Function and Stress Response Are Controlled by Protein Synthesis. Nature, 534, 335-340. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Tuorto, F., Herbst, F., Alerasool, N., et al. (2015) The tRNA Methyl-transferase Dnmt2 Is Required for Accurate Polypeptide Synthesis during Haematopoiesis. EMBO Journal, 34, 2350-2362. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Wang, W.G. (2016) mRNA Methylation by NSUN2 in Cell Proliferation. WIREs RNA, 7, 838-842. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Chen, X., Li, A., Sun, B.F., et al. (2019) 5-Methylcytosine Promotes Pathogenesis of Bladder Cancer through Stabilizing mRNAs. Nature Cell Biology, 21, 978-990. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Fu, L.J., Guerrero, C.R., Zhong, N., et al. (2014) Tet-Mediated Formation of 5-Hydroxymethylcytosine in RNA. Journal of the American Chemical Society, 136, 11582-11585. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Li, W. and Xu, L. (2019) Epigenetic Function of TET Family, 5-Methylcytosine, and 5-Hydroxymethylcytosine in Hematologic Malignancies. Oncology Research and Treatment, 42, 309-318. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Takai, H., Masuda, K., Sato, T., et al. (2014) 5-Hydroxymethylcytosine Plays a Critical Role in Glioblastomagenesis by Recruiting the CHTOP-Methylosome Com-plex. Cell Reports, 9, 48-60. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Carella, A., Tejedor, J.R., García, M.G., et al. (2020) Epigenetic Downregulation of TET3 Reduces Genome-Wide 5hmC Levels and Promotes Glioblas-toma Tumorigenesis. International Journal of Cancer, 146, 373-387. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Yang, X., Yang, Y., Sun, B.F., et al. (2017) 5-Methylcytosine Promotes mRNA Export—NSUN2 as the Methyltransferase and ALYREF as an m5C Reader. Cell Research, 27, 606-625. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Dominissini, D. and Rechavi, G. (2017) 5-Methylcytosine Mediates Nu-clear Export of mRNA. Cell Research, 27, 717-719. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Yang, Y., Wang, L., Han, X., et al. (2019) RNA 5-Methylcytosine Facilitates the Maternal-to-Zygotic Transition by Preventing Maternal mRNA Decay. Molecular Cell, 75, 1188-1202. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Nagy, Z., Seneviratne, J.A., Kanikevich, M., et al. (2021) An ALYREF-MYCN Coactivator Complex Drives Neuroblastoma Tu-morigenesis through Effects on USP3 and MYCN Stability. Nature Communications, 2, Article No. 1881. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Wang, J.Z., Zhu, W., Han, J., et al. (2021) The Role of the HIF-1α/ALYREF/PKM2 Axis in Glycolysis and Tumorigenesis of Bladder Cancer. Cancer Communications, 41, 560-575. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Cheng, J.X., et al. (2018) RNA Cytosine Methylation and Me-thyltransferases Mediate Chromatin Organization and 5-Azacytidine Response and Resistance in Leukaemia. Nature Communications, 9, Article No. 1163. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Schaefer, M., Hagemann, S., Hanna, K., et al. (2009) Azacyti-dine Inhibits RNA Methylation at DNMT2 Target Sites in Human Cancer Cell Lines. Cancer Research, 69, 8127-8132. [Google Scholar] [CrossRef]
|
|
[41]
|
Sakita-Suto, S., Kanda, A., Suzuki, F.S., et al. (2007) Au-rora-B Regulates RNA Methyltransferase NSUN2. Molecular Biology of the Cell, 18, 1107-1117. [Google Scholar] [CrossRef] [PubMed]
|