学术期刊
切换导航
首 页
文 章
期 刊
投 稿
预 印
会 议
书 籍
新 闻
合 作
我 们
按学科分类
Journals by Subject
按期刊分类
Journals by Title
核心OA期刊
Core OA Journal
数学与物理
Math & Physics
化学与材料
Chemistry & Materials
生命科学
Life Sciences
医药卫生
Medicine & Health
信息通讯
Information & Communication
工程技术
Engineering & Technology
地球与环境
Earth & Environment
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
合作期刊
Cooperation Journals
首页
数学与物理
理论数学
Vol. 12 No. 6 (June 2022)
期刊菜单
最新文章
历史文章
检索
领域
编委
投稿须知
文章处理费
最新文章
历史文章
检索
领域
编委
投稿须知
文章处理费
Gorenstein FI-内射复形的性质
Properties of Gorenstein FI-Injective Complexes
DOI:
10.12677/PM.2022.126114
,
PDF
,
HTML
,
,
被引量
作者:
原雪娟
:西北师范大学,数学与统计学院,甘肃 兰州
关键词:
Gorenstein FI-内射模
;
FI-内射复形
;
Gorenstein FI-内射复形
;
Gorenstein FI-Injective Module
;
FI-Injective Complex
;
Gorenstein FI-Injective Complex
摘要:
本文将Gorenstein FI-内射模推广到复形范畴。首先引入Gorenstein FI-内射复形的概念。其次研究Gorenstein FI-内射复形的一些性质。最后证明复形X是Gorenstein FI-内射复形,则每个X
n
是Gorenstein FI-内射模,且对任意FI-内射复形I,复形Hom(I;X) 正合。
Abstract:
In this paper, Gorenstein FI-injective modules are extended to the category of complex. Firstly, the concept of Gorenstein FI-injective complex is introduced. Secondly, some properties of Gorenstein FI-injective complex are studied. Finally, it is proved that a complex X is Gorenstein FI-injective complex, and then each term X
n
is Gorenstein FI-injective in R-Mod and Hom(I;X) is acyclic for any FI-injective complex I.
文章引用:
原雪娟. Gorenstein FI-内射复形的性质[J]. 理论数学, 2022, 12(6): 1041-1046.
https://doi.org/10.12677/PM.2022.126114
参考文献
[1]
Enochs, E.E. and Jenda, O.M.G. (1995) Gorenstein Injective and Projective Modules. Mathe- matische Zeitschrift, 220, 611-633.
https://doi.org/10.1007/BF02572634
[2]
Mao, L.X. and Ding, N.Q. (2007) FI-Injective and FI-Flat Modules. Journal of Algebra, 309, 367-385.
https://doi.org/10.1016/j.jalgebra.2006.10.019
[3]
Chen, X.M. (2016) Ext-FI-Injective Modules and MPI-Injective and MPI-Flat Modules. Nanjing Normal University, Nanjing.
[4]
陈东, 胡葵. 关于Gorenstein FI-内射模[J]. 西北师范大学学报(自然科学版), 2019, 55(3): 9-13.
[5]
Enochs, E.E. and Garci Rozas, J.R. (1998) Gorenstein Injective and Projective Complexes. Communication in Algebra, 26, 1657-1674.
https://doi.org/10.1080/00927879808826229
[6]
辛大伟, 田雪. FI-内射复形[J]. 阜阳师范学院学报, 2016, 33(2): 1-3.
[7]
Stenstrm, B. (1970) Coherent Rings and FP-Injective Modules. Journal of the London Mathematical Society, 2, 323-329.
https://doi.org/10.1112/jlms/s2-2.2.323
[8]
Yang, X.Y. and Liu, Z.K. (2010) FP-Injective Complexes. Communication in Algebra, 38, 137-142.
https://doi.org/10.1080/00927870902861356
[9]
Gillespie, J. (2004) The Flat Model Structure on Ch(R). Transactions of the American Mathematic Society, 365, 3369-3390.
https://doi.org/10.1090/S0002-9947-04-03416-6
[10]
Yang, G. and Estrada, S. (2020) Characterizations of Ding Injective Complexes. Bulletin of the Malaysian Mathematical Sciences Society, 43, 2385-2398.
https://doi.org/10.1007/s40840-019-00807-8
投稿
为你推荐
友情链接
科研出版社
开放图书馆