分数阶Choquard方程变号解的存在性
Existence of Sign-Changing Solutions for a Fractional Choquard Equation
摘要:

分数阶 Choquard 方程具有重要的物理背景,是近年非线性分析领域广受关注的问题之一。 在本文中,我们研究如下的分数阶 Choquard 方程

(−∆)su + V (x)u = (|x|−µ ∗ |u|p)|u|p−2u, x ∈ RN , (P)

其中 s ∈ (0, 1),N ≥ 3,µ ∈ (0, N ),,“∗” 代表卷积算子,(−∆)s 是分数阶拉普拉斯算子。 通过结合 Ekeland 变分原理和隐函数定理,我们证明了 (P ) 存在极小能量变号解 w。 此外,我们还证明了 w 的能量严格大于基态能量,但严格小于基态能量的两倍。

Abstract:

With an important physical background, the fractional Choquard equation has at- tracted great attention from the field of nonlinear analysis in recent years. In this paper, we study the following fractional Choquard equation

(−∆)su + V (x)u = (|x|−µ ∗ |u|p)|u|p−2u, x ∈ RN , (P)

where s ∈ (0, 1), N ≥ 3, µ ∈ (0, N ), , “∗” stands for the convolution and (−∆)s is the fractional Laplacian operator. By combining the Ekeland variational principle with the implicit function theorem, we prove that the problem (P ) possesses one least energy sign-changing solution w. Moreover, we show that the energy of w is strictly larger than the ground state energy and less than twice the ground state energy.

文章引用:高金华. 分数阶Choquard方程变号解的存在性[J]. 应用数学进展, 2022, 11(7): 4089-4109. https://doi.org/10.12677/AAM.2022.117437

参考文献

[1] Lieb, E. (1977) Existence and Uniqueness of the Minimizing Solution of Choquard’s Nonlinear Equation. Studies in Applied Mathematics, 57, 93-105. [Google Scholar] [CrossRef
[2] Pekar, S. (1954) Untersuchung Berlin. u¨ber die elektronentheorie der kristalle. Akademie Verlag,
[3] Moroz, I., Penrose, R. and Tod, P. (1998) Spherically-Symmetric Solutions of the Schro¨dinger- Newton Equations. Classical and Quantum Gravity, 15, 2733-2742. [Google Scholar] [CrossRef
[4] Bahrami, M., Großardt, A., Donadi, S. and Bassi, A. (2014) The Schro¨dinger-Newton Equation and Its Foundations. New Journal of Physics, 16, 7-28. [Google Scholar] [CrossRef
[5] Giulini, D. and Großardt, A. (2012) The Schro¨dinger-Newton Equation as a Non-Relativistic Limit of Self-Gravitating Klein-Gordon and Dirac Fields. Classical and Quantum Gravity, 29, Article ID: 215010. [Google Scholar] [CrossRef
[6] Moroz, V. and Schaftingen, J.V. (2017) A Guide to the Choquard Equation. Journal of Fixed Point Theory and Applications, 19, 773-813. [Google Scholar] [CrossRef
[7] Alves, C., N´obrega, A. and Yang, M. (2016) Multi-Bump Solutions for Choquard Equation with Deepening Potential Well. Calculus of Variations and Partial Differential Equations, 55, 1-28. [Google Scholar] [CrossRef
[8] Moroz, V. and Schaftingen, J.V. (2013) Groundstates of Nonlinear Choquard Equations: Ex- istence, Qualitative Properties and Decay Asymptotics. Journal of Functional Analysis, 265, 153-184. [Google Scholar] [CrossRef
[9] Moroz, V. and Schaftingen, J.V. (2015) Existence of Groundstates for a Class of Nonlinear Choquard Equations. Transactions of the American Mathematical Society, 367, 6557-6579. [Google Scholar] [CrossRef
[10] Gao, F. and Yang, M. (2017) On Nonlocal Choquard Equations with Hardy-Littlewood- Sobolev Critical Exponents. Journal of Mathematical Analysis and Applications, 448, 1006- 1041. [Google Scholar] [CrossRef
[11] Clapp, M. and Salazar, D. (2013) Positive and Sign Changing Solutions to a Nonlinear Choquard Equation. Journal of Mathematical Analysis and Applications, 407, 1-15. [Google Scholar] [CrossRef
[12] Ye, H. (2015) The Existence of Least Energy Nodal Solutions for Some Class of Kirchhoff Equations and Choquard Equations in RN . Journal of Mathematical Analysis and Applications, 431, 935-954. [Google Scholar] [CrossRef
[13] Ghimenti, M. and Schaftingen, J.V. (2016) Nodal Solutions for the Choquard Equation. Jour- nal of Functional Analysis, 271, 107-135. [Google Scholar] [CrossRef
[14] Ghimenti, M., Moroz, V. and Schaftingen, J.V. (2017) Least Action Nodal Solutions for the Quadratic Choquard Equation. Proceedings of the American Mathematical Society, 145, 737- 747. [Google Scholar] [CrossRef
[15] d’Avenia, P., Siciliano, G. and Squassina, M. (2015) Existence Results for a Doubly Nonlocal Equation. Sao Paulo Journal of Mathematical Sciences, 9, 311-324. [Google Scholar] [CrossRef
[16] d’Avenia, P., Siciliano, G. and Squassina, M. (2015) On Fractional Choquard Equations. Math- ematical Models and Methods in Applied Sciences, 25, 1447-1476. [Google Scholar] [CrossRef
[17] Chen, Y. and Liu, C. (2016) Ground State Solutions for Non-Autonomous Fractional Choquard Equations. Nonlinearity, 29, 1827-1842. [Google Scholar] [CrossRef
[18] Shen, Z., Gao, F. and Yang, M. (2016) Groundstates for Nonlinear Fractional Choquard E- quations with General Nonlinearities. Mathematical Models and Methods in Applied Sciences, 39, 4082-4098. [Google Scholar] [CrossRef
[19] Wei, S. (2015) Sign-Changing Solutions for a Class of Kirchhoff-Type Problem in Bounded Domains. Journal of Differential Equations, 259, 1256-1274. [Google Scholar] [CrossRef
[20] Lieb, E. and Loss, M. (1997) Analysis, Second Edition. In: Graduate Studies in Mathematics, Vol. 14, American Mathematical Society, Providence, RI.
[21] Nezza, E., Palatucci, G. and Valdinoci, E. (2012) Hitchhiker’s Guide to the Fractional Sobolev Spaces. Bulletin des Sciences Math´ematiques, 136, 521-573. [Google Scholar] [CrossRef
[22] Caffarelli, L. and Silvestre, L. (2006) An Extension Problem Related to the Fractional Lapla- cian. Communications in Partial Differential Equations, 32, 1245-1260. [Google Scholar] [CrossRef
[23] Br¨andle, C., Colorado, E., Pablo, A. and S´anchez, U. (2010) A Concave-Convex Elliptic Prob- lem Involving the Fractional Laplacian. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 143, 39-71. [Google Scholar] [CrossRef
[24] Castro, A., Cossio, J. and Neuberger, J. (1997) A Sign-Changing Solution for a Superlinear Dirichlet Problem. The Rocky Mountain Journal of Mathematics, 27, 1041-1053. [Google Scholar] [CrossRef
[25] Bartsch, T., Weth, T. and Willem, M. (2005) Partial Symmetry of Least Energy Nodal Solu- tions to Some Variational Problems. Journal d’Analyse Math´ematique, 96, 1-18. [Google Scholar] [CrossRef
[26] Weth, T. (2006) Energy Bounds for Entire Nodal Solutions of Autonomous Superlinear Equa- tions. Calculus of Variations and Partial Differential Equations, 27, 421-437. [Google Scholar] [CrossRef
[27] Bartsch, T. and Weth, T. (2005) Three Nodal Solutions of Singularly Perturbed Elliptic Equa- tions on Domains without Topology. Annales de l’Institut Henri Poincar´e C, Non Lin´eaire, 22, 259-281. [Google Scholar] [CrossRef
[28] Willem, M. (1996) Minimax Theorems. Springer Science + Business Media, Berlin. [Google Scholar] [CrossRef