|
[1]
|
Xiang, Q., Gao, Y., Liu, J.Q., et al. (2011) Development of Nanomaterials Electrochemical Biosensor and Its Applications. Advanced Materials Research, 418-420, 2082-2085. [Google Scholar] [CrossRef]
|
|
[2]
|
Li, Q., Li, Y. and Zeng, W. (2021) Preparation and Application of 2D MXene-Based Gas Sensors: A Review. Chemosensors, 9, 225. [Google Scholar] [CrossRef]
|
|
[3]
|
Liu, W., Lu, G., Yang, Z., et al. (2022) Correction: Engineering Lithiophilic Ni-Al@LDH Interlayers on a Garnet-Type Electrolyte for Solid-State Lithium Metal Batteries. Chemical Communications, 57, 10214-10217. [Google Scholar] [CrossRef]
|
|
[4]
|
Chen, Y., Xu, L., Yang, M., et al. (2022) Design of 2D/2D CoAl LDH/g-C3N4 Heterojunction-Driven Signal Amplification: Fabrication and Assay for Photoelectrochemical Aptasensor of Ofloxacin. Sensors and Actuators B: Chemical, 353, Article ID: 131187. [Google Scholar] [CrossRef]
|
|
[5]
|
Wang, Z., Li, X., Xuan, C., et al. (2021) Photo-Synergetic Nitrogen-Doped MXene/Reduced Graphene Oxide Sandwich-Like Architecture for High-Performance Lithium-Sulfur Batteries. International Journal of Energy Research, 45, 2728-2738. [Google Scholar] [CrossRef]
|
|
[6]
|
Rajakumaran, R., Anupriya, J. and Chen, S. (2021) 2D-Titanium Carbide MXene/RGO Composite Modified Electrode for Selective Detection of Carcinogenic Residue Furazolidone in Food and Biological Samples. Materials Letters, 297, Article ID: 129979. [Google Scholar] [CrossRef]
|
|
[7]
|
Chauhan, N., Chawla, S., Pundir, C.S., et al. (2017) An Electrochemical Sensor for Detection of Neurotransmitter-Acetylcholine Using Metal Nanoparticles, 2D Material and Conducting Polymer Modified Electrode. Biosensors & Bioelectronics, 89, 377-383. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Zou, J., Wu, S., Liu, Y., et al. (2018) An Ultra-Sensitive Electrochemical Sensor Based on 2D g-C3N4/CuO Nanocomposites for Dopamine Detection. Carbon, 130, 652-663. [Google Scholar] [CrossRef]
|
|
[9]
|
Rasheed, P.A., Pandey, R.P., Jabbar, K.A., Ponraj, J., et al. (2019) Sensitive Electrochemical Detection of L-cysteine Based on a Highly Stable Pd@Ti3C2Tx (MXene) Nanocomposite Modified Glassy Carbon Electrode. Analytical Methods, 11, 3851-3856. [Google Scholar] [CrossRef]
|
|
[10]
|
Zhang, K., Sun, H. and Hou, S. (2016) Layered MoS2-Graphene Composites for Biosensor Applications with Sensitive Electrochemical Performance. Analytical Methods, 8, 3780-3787. [Google Scholar] [CrossRef]
|
|
[11]
|
Wang, F., Guo, H., Chai, Y., et al. (2013) The Controlled Regulation of Morphology and Size of HKUST-1 by “Coordination Modulation Method”. Microporous and Mesoporous Materials, 173, 181-188. [Google Scholar] [CrossRef]
|
|
[12]
|
Pachfule, P., Panda, T., Dey, C., et al. (2010) Structural Diversity in a Series of Metal-Organic Frameworks (MOFs) Composed of Divalent Transition Metals, 4,4’-Bipyridine and a Flexible Carboxylic Acid. CrystEngComm, 12, 2381. [Google Scholar] [CrossRef]
|
|
[13]
|
Chen, S., Huang, R., Zou, J., et al. (2020) A Sensitive Sensor Based on MOFs Derived Nanoporous Carbons for Electrochemical Detection of 4-Aminophenol. Ecotoxicology and Environmental Safety, 191, Article ID: 110194. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Li, X., Li, C., Wu, C., et al. (2019) Strategy for Highly Sensitive Electrochemical Sensing: In Situ Coupling of a Metal-Organic Framework with Ball-Mill-Exfoliated Graphene. Analytical Chemistry, 91, 6043-6050. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Khan, M.Z.H., Ahommed, M.S. and Daizy, M. (2020) Detection of Xanthine in Food Samples with an Electrochemical Biosensor Based on PEDOT:PSS and Functionalized Gold Nanoparticles. RSC Advances, 10, 36147-36154. [Google Scholar] [CrossRef]
|
|
[16]
|
Feng, X., Yin, X., Bo, X., et al. (2019) An Ultrasensitive Luteolin Sensor Based on MOFs Derived CuCo Coated Nitrogen-Doped Porous Carbon Polyhedron. Sensors and Actuators B: Chemical, 281, 730-738. [Google Scholar] [CrossRef]
|
|
[17]
|
Duan, J., Li, Y., Pan, Y., et al. (2019) Metal-Organic Framework Nanosheets: An Emerging Family of Multifunctional 2D Materials. Coordination Chemistry Reviews, 395, 25-45. [Google Scholar] [CrossRef]
|
|
[18]
|
He, T., Ni, B., Zhang, S., et al. (2018) Ultrathin 2D Zirconium Metal-Organic Framework Nanosheets: Preparation and Application in Photocatalysis. Small, 14, Article ID: 1703929. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Ye, Z., Schukraft, G.E.M., L’hermitte, A., et al. (2020) Mechanism and Stability of an Fe-Based 2D MOF during the Photoelectro-Fenton Treatment of Organic Micropollutants under UVA and Visible Light Irradiation. Water Research, 184, Article ID: 115986. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Li, Q., Shao, Z., Han, T., et al. (2019) A High-Efficiency Electrocatalyst for Oxidizing Glucose: Ultrathin Nanosheet Co-Based Organic Framework Assemblies. ACS Sustainable Chemistry & Engineering, 7, 8986-8992. [Google Scholar] [CrossRef]
|
|
[21]
|
Lu, S., Jia, H., Hummel, M., et al. (2021) Two-Dimensional Conductive Phthalocyanine-Based Metal-Organic Frameworks for Electrochemical Nitrite Sensing. RSC Advances, 11, 4472-4477. [Google Scholar] [CrossRef]
|
|
[22]
|
Hu, W., Pang, J., Biswas, S., et al. (2021) Ultrasensitive Detection of Bacteria Using a 2D MOF Nanozyme-Amplified Electrochemical Detector. Analytical Chemistry, 93, 8544-8552. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Song, J., Zheng, J., Yang, A., et al. (2021) Metal-Organic Framework Transistors for Dopamine Sensing. Materials Chemistry Frontiers, 5, 3422-3427. [Google Scholar] [CrossRef]
|
|
[24]
|
Qiu, Z., Yang, T., Gao, R., Jie, G., et al. (2019) An Electrochemical Ratio Metric Sensor Based on 2D MOF Nanosheet/Au/Polyxanthurenic Acid Composite for Detection of Dopamine. Journal of Electroanalytical Chemistry, 835, 123-129. [Google Scholar] [CrossRef]
|
|
[25]
|
Devic, T. and Serre, C. (2014) High Valence 3p and Transition Metal Based MOFs. Chemical Society Reviews, 43, 6097-6115. [Google Scholar] [CrossRef]
|
|
[26]
|
Zhao, X., Bai, J., Bo, X., et al. (2019) A Novel Electrochemical Sensor Based on 2D CuTCPP Nanosheets and Platelet Ordered Mesoporous Carbon Composites for Hydroxylamine and Chlorogenic Acid. Analytica Chimica Acta, 1075, 71-80. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Gao, F., Yan, Z.H., Cai, Y., et al. (2021) 2D Leaf-Like ZIF-L Decorated with Multi-Walled Carbon Nanotubes as Electrochemical Sensing Platform for Sensitively Detecting Thiabendazole Pesticide Residues in Fruit Samples. Analytical and Bioanalytical Chemistry, 413, 7485-7494. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Li, Y., Xie, M., Zhang, X., et al. (2019) Co-MOF Nanosheet Array: A High-Performance Electrochemical Sensor for Non-Enzymatic Glucose Detection. Sensors and Actuators B: Chemical, 278, 126-132. [Google Scholar] [CrossRef]
|
|
[29]
|
Li, S., Bai, W., Zhang, X., et al. (2020) NiO/Cu-TCPP Hybrid Nanosheets as an Efficient Substrate for Supercapacitor and Sensing Applications. Journal of the Electrochemical Society, 167, Article ID: 027534. [Google Scholar] [CrossRef]
|