|
[1]
|
Simonneau, G., Montani, D., Celermajer, D.S., et al. (2019) Haemodynamic Definitions and Updated Clinical Classifica-tion of Pulmonary Hypertension. European Respiratory Journal, 53, Article ID: 1801913. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
柳茵. 慢性高原病青海诊断标准[J]. 青海医学院学报, 2005(1): 3-5.
|
|
[3]
|
Luks, A.M., Levett, D., Martin, D.S., et al. (2017) Changes in Acute Pulmonary Vascular Respon-siveness to Hypoxia during a Progressive Ascent to High Altitude (5300 m). Experimental Physiology, 102, 711-724. [Google Scholar] [CrossRef]
|
|
[4]
|
Sydykov, A., Mamazhakypov, A., Maripov, A., et al. (2021) Pulmonary Hypertension in Acute and Chronic High Altitude Maladaptation Disorders. International Journal of Environmental Re-search and Public Health, 18, Article No. 1692. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Rowan, S.C. and McLoughlin, P. (2014) Hypoxic Pulmonary Hypertension: The Paradigm Is Changing. Experimental Physiology, 99, 837-838. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Gassmann, M., Cowburn, A., Gu, H., et al. (2021) Hypoxia-Induced Pulmonary Hypertension—Utilizing Experiments of Nature. British Journal of Pharmacology, 178, 121-131. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Semenza, G.L. (2009) Regulation of Oxygen Homeostasis by Hypoxia-Inducible Factor 1. Physiology, 24, 97-106. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Hickey, M.M., Richardson, T., Wang, T., et al. (2010) The Von Hippel-Lindau Chuvash Mutation Promotes Pulmonary Hypertension and Fibrosis in Mice. The Journal of Clinical In-vestigation, 120, 827-839. [Google Scholar] [CrossRef]
|
|
[9]
|
Witt, K.E. and Huerta-Sánchez, E. (2019) Convergent Evolution in Human and Domesticate Adaptation to High-Altitude Environments. Philosophical Transactions of the Royal Society B, 374, Ar-ticle ID: 20180235. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Wilkins, M.R., Ghofrani, H.A., Weissmann, N., et al. (2015) Patho-physiology and Treatment of High-Altitude Pulmonary Vascular Disease. Circulation, 131, 582-590. [Google Scholar] [CrossRef]
|
|
[11]
|
Peng, Y., Cui, C., He, Y., et al. (2017) Down-Regulation of EPAS1 Transcription and Genetic Adaptation of Tibetans to High-Altitude Hypoxia. Molecular Bi-ology and Evolution, 34, 818-830. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Talbot, N.P., Croft, Q.P., Curtis, M.K., et al. (2014) Contrasting Effects of Ascorbate and Iron on the Pulmonary Vascular Response to Hypoxia in Hu-mans. Physiological Reports, 2, e12220. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Yu, J., Yu, L., Li, Y., et al. (2020) Iron Deficiency Is a Possible Risk Factor Causing Right Heart Failure in Tibetan Children Living in High Altitude Area. Medicine, 99, e21133. [Google Scholar] [CrossRef]
|
|
[14]
|
PeñAloza, D., Arias-Stella, J., Sime, F., et al. (1964) The Heart and Pulmonary Circulation in Children at High Altitudes: Physiological, Anatomical, and Clinical Observations. Pediatrics, 34, 568-582. [Google Scholar] [CrossRef]
|
|
[15]
|
Li, J.J., Liu, Y., Xie, S.Y., et al. (2019) Newborn Screening for Con-genital Heart Disease Using Echocardiography and Follow-Up at High Altitude in China. International Journal of Car-diology, 274, 106-112. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Saxena, A. (2019) Status of Pediatric Cardiac Care in Developing Countries. Children, 6, Article No. 34. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Pascall, E. and Tulloh, R.M. (2018) Pulmonary Hypertension in Congenital Heart Disease. Future Cardiology, 14, 343-353. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Chen, Q., Lu, L., Qi, G., et al. (2011) Susceptibility of Patients with Congenital Heart Disease to Pulmonary Hypertension at a High Altitude. Chinese Medical Journal, 91, 3120-3122.
|
|
[19]
|
Wheatley, K., Creed, M. and Mellor, A. (2011) Haemato-logical Changes at Altitude. BMJ Military Health, 157, 38-42. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Singh, I. and Chohan, I. (1972) Blood Coagulation Changes at High Altitude Predisposing to Pulmonary Hypertension. British Heart Journal, 34, 611-617. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Kjellström, B., Nisell, M., Kylhammar, D., et al. (2019) Sex-Specific Differences and Survival in Patients with Idiopathic Pulmonary Arterial Hypertension 2008-2016. ERJ Open Research, 5, Article ID: 00075-2019. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Hester, J., Ventetuolo, C. and Lahm, T. (2019) Sex, Gender, and Sex Hormones in Pulmonary Hypertension and Right Ventricular Failure. Comprehensive Physiology, 10, 125-170. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Hoeper, M.M., Huscher, D., Ghofrani, H.A., et al. (2013) Elderly Pa-tients Diagnosed with Idiopathic Pulmonary Arterial Hypertension: Results from the COMPERA Registry. International Journal of Cardiology, 168, 871-880. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Ventetuolo, C.E., Praestgaard, A., Palevsky, H.I., et al. (2014) Sex and Haemodynamics in Pulmonary Arterial Hypertension. European Respiratory Journal, 43, 523-530. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Zhang, R., Dai, L.Z., Xie, W.P., et al. (2011) Survival of Chi-nese Patients with Pulmonary Arterial Hypertension in the Modern Treatment Era. Chest, 140, 301-309. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Villafuerte, F.C. and Corante, N. (2016) Chronic Mountain Sickness: Clinical Aspects, Etiology, Management, and Treatment. High Altitude Medicine & Biology, 17, 61-69. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
León-Velarde, F., Ramos, M.A., Hernández, J.A., et al. (1997) The Role of Menopause in the Development of Chronic Mountain Sickness. American Journal of Physiology-Regulatory, In-tegrative and Comparative Physiology, 272, R90-R94. [Google Scholar] [CrossRef]
|
|
[28]
|
Gou, Q., Shi, R., Zhang, X., et al. (2020) The Prevalence and Risk Factors of High-Altitude Pulmonary Hypertension among Native Tibetans in Sichuan Province, China. High Alti-tude Medicine & Biology, 21, 327-335. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Sime, F., Penaloza, D. and Ruiz, L. (1971) Bradycardia, Increased Cardiac Output, and Reversal of Pulmonary Hypertension in Altitude Natives Living at Sea Level. British Heart Journal, 33, 647-657. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Antezana, A., Antezana, G., Aparicio, O., et al. (1998) Pulmonary Hy-pertension in High-Altitude Chronic Hypoxia: Response to Nifedipine. European Respiratory Journal, 12, 1181-1185. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Kojonazarov, B., Isakova, J., Imanov, B., et al. (2012) Bosentan Reduces Pulmonary Artery Pressure in High Altitude Residents. High Altitude Medicine & Biology, 13, 217-223. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Aldashev, A., Kojonazarov, B., Amatov, T., et al. (2005) Phosphodiesterase Type 5 and High Altitude Pulmonary Hypertension. Thorax, 60, 683-687. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Richalet, J.P., Rivera-Ch, M., Maignan, M., et al. (2008) Acetazo-lamide for Monge’s Disease: Efficiency and Tolerance of 6-Month Treatment. American Journal of Respiratory and Critical Care Medicine, 177, 1370-1376. [Google Scholar] [CrossRef]
|
|
[34]
|
Abe, K., Tawara, S., Oi, K., et al. (2006) Long-Term Inhibition of Rho-Kinase Ameliorates Hypoxia-Induced Pulmonary Hypertension in Mice. Journal of Cardiovascular Pharmacol-ogy, 48, 280-285. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Kojonazarov, B., Myrzaakhmatova, A., Sooronbaev, T., et al. (2012) Effects of Fasudil in Patients with High-Altitude Pulmonary Hypertension. European Respiratory Journal, 39, 496-498. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
张晓庆, 王崇忠. 酚妥拉明联合合理喂养治疗小儿高原性心脏病合并营养性缺铁性贫血的疗效及对心功能的影响[J]. 医学综述, 2016, 22(11): 2234-2237.
|
|
[37]
|
Wu, F., Yao, W., Yang, J., et al. (2017) Protective Effects of Aloperin on Monocroline-Induced Pul-monary Hypertension via Regulation of Rho A/Rho Kinsase Pathway in Rats. Biomedicine & Pharmacotherapy, 95, 1161-1168. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
王亚峰, 王爱霞, 王生彪, 等. 甘西鼠尾草对大鼠高原肺动脉高压的干预作用及机制[J]. 中国应用生理学杂志, 2019, 35(6): 533-536.
|
|
[39]
|
Luo, Y., Dong, H.Y., Zhang, B., et al. (2015) miR-29a-3p Attenuates Hypoxic Pulmonary Hypertension by Inhibiting Pulmonary Adventitial Fibroblast Ac-tivation. Hypertension, 65, 414-420. [Google Scholar] [CrossRef]
|
|
[40]
|
Zhang, N., Dong, M., Luo, Y., et al. (2017) Danshensu Prevents Hypoxic Pulmonary Hypertension in Rats by Inhibiting the Proliferation of Pulmonary Artery Smooth Muscle Cells via TGF-β-Smad3-Associated Pathway. European Journal of Pharmacology, 820, 1-7. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
安昌善, 柳济成, 孙红花, 等. 黄芪对低氧性肺动脉高压大鼠肺血管结构重建干预作用及机制的研究[J]. 中国心血管病研究杂志, 2003, 1(2): 146-148.
|
|
[42]
|
Hampl, V., Bibova, J., Povýšilová, V., et al. (2003) Dehydroepiandrosterone Sulphate Reduces Chronic Hypoxic Pulmonary Hy-pertension in Rats. European Respiratory Journal, 21, 862-865. [Google Scholar] [CrossRef] [PubMed]
|