响应变量缺失的半参数 EV 模型估计的渐近正态性
Asymptotic Properties for Estimators in Semi-Parametric Error-in-Variables Model with Missing Responses
摘要: 本文重点研究半参数模型中估计量的性质,根据实际情况特别考虑了缺失数据和测量误差的影响。 缺失数据采用三种不同的方法处理:直接删除法、插值填补法和回归插值法。同时,得到了斜率参数和非参数变量的相应估计量。在合适的条件下,我们深入研究了这些估计量的渐近正态性,为未知参数和函数的置信区间的构建提供了基础。此外,在不同的样本量和缺失概率下也对理论结果进行了数值模拟,其结果与理论结果一致。
Abstract: This paper, concentrating on the properties of estimators in semi-parametric models, particularly considers the effects of missing data and measurement errors according to the actual situation. The missing data are processed by three different methods: di- rect deletion method, imputation(interpolation fill) method, and regression surrogate method. Also, the corresponding estimators of slope parameter and non-parameter variable are obtained. Under suitable conditions, the asymptotic normality of these estimators is studied thoroughly, which provides the basis for the construction of con- fidence intervals for unknown parameters and functions. In addition, different sample sizes and missing probabilities were set for simulation, whose results are consistent with the theoretical results.
文章引用:杨雪, 张晶晶, 胡婷婷. 响应变量缺失的半参数 EV 模型估计的渐近正态性[J]. 应用数学进展, 2022, 11(7): 4335-4354. https://doi.org/10.12677/AAM.2022.117460

参考文献

[1] Engle, R.F., Granger, C.W.J., Rice, J. and Weiss, A. (1986) Semiparametric Estimation of the Relation between Weather and Electricity Sales. Journal of the American Statistical Associa- tion, 81, 310-320. [Google Scholar] [CrossRef
[2] Bindele, H.F. and Abebe, A. (2015) Semi-Parametric Rank Regression with Missing Responses. Semi-Parametric Rank Regression with Missing Responses. Journal of Multivariate Analysis, 142, 117-132. [Google Scholar] [CrossRef
[3] Wang, N., Carroll, R.J. and Lin, X. (2005) Efficient Semiparametric Marginal Estimation for Longitudinal/Clustered Data. Journal of the American Statistical Association, 100, 147-157. [Google Scholar] [CrossRef
[4] Hu, X.M., Wang, Z.Z. and Liu, F. (2008) Zero Finite-Order Serial Correlation Test in a Semi-Parametric Varying-Coefficient Partially Linear Errors-in-Variables Model. Statistics and Probability Letters, 78, 1560-1569. [Google Scholar] [CrossRef
[5] Cui, H.J. and Chen, S.X. (2003) Empirical Likelihood Confidence Region for Parameter in the Errors-in-Variable Models. Journal of Multivariate Analysis, 84, 101-115. [Google Scholar] [CrossRef
[6] Ahmad, I., Leelahanon, S. and Li, Q. (2005) Efficient Estimation of a Semiparametric Partially Linear Varying Coefficient Model. The Analysis of Statistics, 33, 258-283. [Google Scholar] [CrossRef
[7] Chen, L.-P. (2019) Semiparametric Estimation for Cure Survival Model with Left-Truncated and Right-Censored Data and Covariate Measurement Error. Statistics and Probability Letters, 154, 108-547. [Google Scholar] [CrossRef
[8] Ibrahim, J.G., Chen, M.H., Lipsitz, S.R. and Herring, A.H. (2005) Missing Data Methods for Generalized Linear Models: A Comparative Review. Journal of the American Statistical Association, 100, 332-346. [Google Scholar] [CrossRef
[9] Rubin, D.B. (1976) Inference and Missing Data. Biometrika, 63, 581-592. [Google Scholar] [CrossRef
[10] Knol, M.J., Janssen, K.J.M., Donders, A.R.T., Egberts, A.C.G. and Geerlings, M.I. (2010) Unpredictable Bias When Using the Missing Indicator Method or Complete Case Analysis for Missing Confounder Values: An Empirical Example. Journal of Clinical Epidemiology, 63, 728-736. [Google Scholar] [CrossRef] [PubMed]
[11] van der Heijden, G.J.M.G., Donders, A.R.T., Stijnen, T. and Moons, K.G.M. (2006) Moons: Imputation of Missing Values Is Superior to Complete Case Analysis and the Missing-Indicator Method in Multivariable Diagnostic Research: A Clinical Example. Journal of Clinical Epi- demiology, 59, 1102-1109. [Google Scholar] [CrossRef] [PubMed]
[12] Li, X.Y. (2012) Lack-of-Fit Testing of Regression Model with Response Missing at Random. Journal of Statistical Planning and Inference, 142, 155-170. [Google Scholar] [CrossRef
[13] Kano, Y. and Takai, K. (2011) Analysis of NMAR Missing Data without Specifying Missing- Data Mechanisms in a Linear Latent Variate Model. Journal of Multivariate Analysis, 102, 1241-1255. [Google Scholar] [CrossRef
[14] Healy, M.J.R. and Westmacott, M. (1956) Missing Values in Experiments Analysis on Auto- matic Computers. Journal of the Royal Statistical Society. Series C (Applied Statistics), 5, 203-206. [Google Scholar] [CrossRef
[15] Cheng, P.E. (1994) Nonparametric Estimation of Mean Functionals with Data Missing At Random. Journal of the American Statistical Association, 89, 81-87. [Google Scholar] [CrossRef
[16] Wang, Q. and Sun, Z. (2007) Estimation in Partially Linear Models with Missing Responses at Random. Journal of Multivariate Analysis, 98, 1470-1493. [Google Scholar] [CrossRef
[17] Härdle, W., Liang, H. and Gao, J.T. (2000) Partially Linear Models. Physica-Verlag, Heidel- berg. [Google Scholar] [CrossRef
[18] Gao, J.T., Chen, X.R. and Zhao, L.C. (1994) Asymptotic Normality of a Class of Estimators in Partial Linear Models. Acta Mathematica Sinica, 37, 256-268.
[19] Chen, H. (1988) Convergence Rates for Parametric Components in a Partly Linear Model. The Annals of Statistics, 16, 136-146. [Google Scholar] [CrossRef
[20] Liang, H., Härdle, W. and Carrol, R.J. (1999) Estimation in a Semiparametric Partially Linear Errors-in-Variables Model. The Annals of Statistics, 27, 1519-1935. [Google Scholar] [CrossRef
[21] Baek, J.I. and Liang, H.Y. (2006) Asymptotic of Estimators in Semi-Parametric Model under NA Samples. Journal of Statistical Planning and Inference, 136, 3362-3382. [Google Scholar] [CrossRef