| [1] | Leslie, P.H. and Gower, J.C. (1960) The Properties of a Stochastic Model for the Predator-
Prey Type of Interaction between Two Species. Biometrika, 47, 219-234. https://doi.org/10.1093/biomet/47.3-4.219
 | 
                     
                                
                                    
                                        | [2] | Schoener, R. (1974) Stability and Complexity in Model Ecosystems. Evolution, 28, 510-511. https://doi.org/10.1111/j.1558-5646.1974.tb00784.x
 | 
                     
                                
                                    
                                        | [3] | Aguirre, P., Gonzlez-Olivares, E. and Sez, E. (2009) Two Limit Cycles in a Leslie-Gower Predator-Prey Model with Additive Allee Effect. Nonlinear Analysis: Real World Applications,
10, 1401-1416. https://doi.org/10.1016/j.nonrwa.2008.01.022
 | 
                     
                                
                                    
                                        | [4] | Flores, J.D. and Gonzalez-Olivares, E. (2014) Dynamics of a Predator-Prey Model with Allee Effect on Prey and Ratio-Dependent Functional Response. Ecological Complexity, 18, 59-66. https://doi.org/10.1016/j.ecocom.2014.02.005
 | 
                     
                                
                                    
                                        | [5] | Qiao, T., Cai, Y., Fu, S., et al. (2019) Stability and Hopf Bifurcation in a Predator-Prey Model with the Cost of Anti-Predator Behaviors. International Journal of Bifurcation and Chaos, 29,
Article ID: 1950185. https://doi.org/10.1142/S0218127419501852
 | 
                     
                                
                                    
                                        | [6] | Holyoak, M. (2003) Complex Population Dynamics: A Theoretical/Empirical Synthesis. Integrative and Comparative Biology, 43, 479. https://doi.org/10.1093/icb/43.3.479
 | 
                     
                                
                                    
                                        | [7] | Arancibia-Ibarra, C. and Gonzlez-Olivares, E. (2011) A Modified Leslie-Gower Predator-Prey Model with Hyperbolic Functional Response and Allee Effect on Prey. BIOMAT 2010 International Symposium on Mathematical and Computational Biology, Rio de Janeiro, Brazil, 24-29
July 2010, 146-162. https://doi.org/10.1142/9789814343435 0010
 | 
                     
                                
                                    
                                        | [8] | Aziz-Alaoui, M.A. and Okiye, M.D. (2003) Boundedness and Global Stability for a Predator-Prey Model with Modified Leslie-Gower and Holling-Type II Schemes. Applied Mathematics
Letters, 16, 1069-1075. https://doi.org/10.1016/S0893-9659(03)90096-6
 | 
                     
                                
                                    
                                        | [9] | Feng, P. and Kang, Y. (2015) Dynamics of a Modified Leslie-Gower Model with Double Allee Effects. Nonlinear Dynamics, 80, 1051-1062. https://doi.org/10.1007/s11071-015-1927-2
 | 
                     
                                
                                    
                                        | [10] | Singh, A. and Gakkhar, S. (2014) Stabilization of Modified Leslie-Gower Prey-Predator Model. Differential Equations, Dynamical Systems, 22, 239-249. https://doi.org/10.1007/s12591-013-0182-6
 | 
                     
                                
                                    
                                        | [11] | Arancibia-Ibarra, C. and Flores, J. (2021) Dynamics of a Leslie-Gower Predator-Prey Model with Holling Type II Functional Response, Allee Effect and a Generalist Predator. Mathematics and Computers in Simulation, 188, 1-22. https://doi.org/10.1016/j.matcom.2021.03.035
 | 
                     
                                
                                    
                                        | [12] | Moustafa, M., Mohd, M.H., Ismail, A.I. and Abdullah, F.A. (2018) Dynamical Analysis of a Fractional-Order Rosenzweig-MacArthur Model Incorporating a Prey Refuge. Chaos, Solitons
and Fractals, 109, 1-13. https://doi.org/10.1016/j.chaos.2018.02.008
 | 
                     
                                
                                    
                                        | [13] | Berec, L., Angulo, E. and Courchamp, F. (2007) Multiple Allee Effects and Population Management. Trends in Ecology and Evolution, 22, 185-191. https://doi.org/10.1016/j.tree.2006.12.002
 | 
                     
                                
                                    
                                        | [14] | Stephens, P.A., Sutherland, W.J., et al. (1999) Consequences of the Allee Effect for Behaviour,
Ecology and Conservation. Trends in Ecology and Evolution, 14, 401-405. https://doi.org/10.1016/S0169-5347(99)01684-5
 | 
                     
                                
                                    
                                        | [15] | Kuznetsov, Y.A. (2013) Elements of Applied Bifurcation Theory. Springer Science and Business
Media, Berlin. |