|
[1]
|
Leslie, P.H. and Gower, J.C. (1960) The Properties of a Stochastic Model for the Predator-
Prey Type of Interaction between Two Species. Biometrika, 47, 219-234.[CrossRef]
|
|
[2]
|
Schoener, R. (1974) Stability and Complexity in Model Ecosystems. Evolution, 28, 510-511. [Google Scholar] [CrossRef]
|
|
[3]
|
Aguirre, P., Gonzlez-Olivares, E. and Sez, E. (2009) Two Limit Cycles in a Leslie-Gower Predator-Prey Model with Additive Allee Effect. Nonlinear Analysis: Real World Applications,
10, 1401-1416. [Google Scholar] [CrossRef]
|
|
[4]
|
Flores, J.D. and Gonzalez-Olivares, E. (2014) Dynamics of a Predator-Prey Model with Allee Effect on Prey and Ratio-Dependent Functional Response. Ecological Complexity, 18, 59-66. [Google Scholar] [CrossRef]
|
|
[5]
|
Qiao, T., Cai, Y., Fu, S., et al. (2019) Stability and Hopf Bifurcation in a Predator-Prey Model with the Cost of Anti-Predator Behaviors. International Journal of Bifurcation and Chaos, 29,
Article ID: 1950185. [Google Scholar] [CrossRef]
|
|
[6]
|
Holyoak, M. (2003) Complex Population Dynamics: A Theoretical/Empirical Synthesis. Integrative and Comparative Biology, 43, 479. [Google Scholar] [CrossRef]
|
|
[7]
|
Arancibia-Ibarra, C. and Gonzlez-Olivares, E. (2011) A Modified Leslie-Gower Predator-Prey Model with Hyperbolic Functional Response and Allee Effect on Prey. BIOMAT 2010 International Symposium on Mathematical and Computational Biology, Rio de Janeiro, Brazil, 24-29
July 2010, 146-162. 0010 [Google Scholar] [CrossRef]
|
|
[8]
|
Aziz-Alaoui, M.A. and Okiye, M.D. (2003) Boundedness and Global Stability for a Predator-Prey Model with Modified Leslie-Gower and Holling-Type II Schemes. Applied Mathematics
Letters, 16, 1069-1075. [Google Scholar] [CrossRef]
|
|
[9]
|
Feng, P. and Kang, Y. (2015) Dynamics of a Modified Leslie-Gower Model with Double Allee Effects. Nonlinear Dynamics, 80, 1051-1062. [Google Scholar] [CrossRef]
|
|
[10]
|
Singh, A. and Gakkhar, S. (2014) Stabilization of Modified Leslie-Gower Prey-Predator Model. Differential Equations, Dynamical Systems, 22, 239-249. [Google Scholar] [CrossRef]
|
|
[11]
|
Arancibia-Ibarra, C. and Flores, J. (2021) Dynamics of a Leslie-Gower Predator-Prey Model with Holling Type II Functional Response, Allee Effect and a Generalist Predator. Mathematics and Computers in Simulation, 188, 1-22. [Google Scholar] [CrossRef]
|
|
[12]
|
Moustafa, M., Mohd, M.H., Ismail, A.I. and Abdullah, F.A. (2018) Dynamical Analysis of a Fractional-Order Rosenzweig-MacArthur Model Incorporating a Prey Refuge. Chaos, Solitons
and Fractals, 109, 1-13. [Google Scholar] [CrossRef]
|
|
[13]
|
Berec, L., Angulo, E. and Courchamp, F. (2007) Multiple Allee Effects and Population Management. Trends in Ecology and Evolution, 22, 185-191. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Stephens, P.A., Sutherland, W.J., et al. (1999) Consequences of the Allee Effect for Behaviour,
Ecology and Conservation. Trends in Ecology and Evolution, 14, 401-405.[CrossRef]
|
|
[15]
|
Kuznetsov, Y.A. (2013) Elements of Applied Bifurcation Theory. Springer Science and Business
Media, Berlin.
|