摘要: 本文研究了形式三角矩阵环上的强Gorenstein FP-内射模。 设

是形式三角矩阵环,其中 A 和 B 是环, U 是左 B-右 A-双模。证明了若T 是左凝聚环,
BU 是有限表示的且

是强Gorenstein FP-内射左 T -模,则

是强Gorenstein FP-内射左A-模,M
2是强Gorenstein FP-内射左B-模,且

是满同态。
Abstract:
This paper considers strongly Gorenstein FP-injective modules over formal triangular matrix rings. Let

be formal triangular matrix ring, where A and B are two rings and U is a (B;A)-bimodule. It is proved that if T is a left coherent ring,
BU is finitely presented and

is strongly Gorenstein FP-injective left T-modules, then

is strongly Gorenstein FP-injective left A-modules, M
2 is strongly Gorenstein FP-injective left B-modules, and

is an epimorphism.