|
[1]
|
Schindl, M., Schoppmann, S.F., Samoning, H., Hausmaninger, H., Kwasny, W., Gnant, M., et al. (2002) Overexpres-sion of Hypoxia-Inducible Factor 1alpha Is Associated with an Unfavorable Prognosis in Lymph Node-Positive Breast Cancer. Clinical Cancer Research, 8, 1831-1837.
|
|
[2]
|
Semenza, G.L. (2010) Defining the Role of Hypoxia-Inducible Factor 1 in Cancer Biology and Therapeutics. Oncogene, 29, 625-634. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Salnikov, A.V., Liu, L., Platen, M., Gladkich, J., Salnikova, O., Ryschich, E., et al. (2012) Hypoxia Induces EMT in Low and Highly Aggressive Pancreatic Tumor Cells but Only Cells with Cancer Stem Cell Characteristics Acquire Pronounced Migratory Potential. PLOS ONE, 7, Article ID: e46391. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Jiang, J., Tang, Y.L. and Liang, X.H. (2011) EMT: A New Vi-sion of Hypoxia Promoting Cancer Progression. Cancer Biology & Therapy, 11, 714-723. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Young, S.D., Marshall, R.S. and Hill, R.P. (1988) Hypoxia Induces DNA Overreplication and Enhances Metastatic Potential of Murine Tumor Crlls. Proceedings of the National Academy of Sciences of the United States of America, 85, 9533-9537. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Munoz-Najar, U.M., Neurath, K.M., Vunbaca, F. and Claffey, K.P. (2006) Hypoxia Stimulates Breast Carcinoma Cell Invasion Cell Invasion through MT1-MMP and MMP-2 Activation. Oncogene, 25, 2379-2392. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Zhou, J., Schmid, T., Schnitzer, S. and Brüne, B. (2006) Tumor Hy-poxia and Cancer Progression. Cancer Letters, 237, 10-21. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Jacobs, I.J., and Menon, U. (2004) Progress and Challenges in Screening for Early Detection of Ovarian Cancer. Molecular & Cellular Proteomic, 3, 355-366. [Google Scholar] [CrossRef]
|
|
[9]
|
Badgwell, D. and Bast, R.C. (2007) Early Detection of Ovar-ian Cancer. Disease Marker, 23, Article ID: 309382. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Torre, L.A., Trabert, B., DeSantis, C.E., Miller, K.D., Samimi, G., Runowicz, C.D., et al. (2018) Ovarian Cancer Statistics, 2018. CA: A Cancer Journal for Clinicians, 68, 284-296. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Goff, B.A. (2012) Ovarian Cancer. Obstetrics & Gynecology Clinics of North America, 39, 183-194. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Momenimovahed, Z., Tiznobaik, A., Taheri, S. and Salehiniya, H. (2019) Ovarian Cancer in the World: Epidemiology and Risk Factors. International Journal of Women’s Health, 11, 287-299. [Google Scholar] [CrossRef]
|
|
[13]
|
Cannioto, R.A., LaMonte, M.J., LaMonte, M.J., Risch, H.A., Eng, K.H., Minlikeeva, A.N., et al. (2016) Recreational Physical Inactivity and Mortality in Women with Invasive Epi-thelial Ovarian Cancer: Evidence from the Ovarian Cancer Association Consortium. British Journal of Cancer, 115, 95-101. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Protani, M.M., Nagle, C.M. and Webb, P.M. (2012) Obesity and Ovarian Cancer Survival: A Systematic Review and Meta-Analysis. Cancer Prevention Research, 5, 901-910. [Google Scholar] [CrossRef]
|
|
[15]
|
Vaupel, P. (2004) The Role of Hypoxia-Induced Factors in Tumor Progression. Oncologist, 9, 10-17. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Zhang, E.Y., Gao, B., Shi, H.L., Huang, L.F., Yang, L., Wu, X.J., et al. (2017) 20(S)-Protopanaxadiol Enhances Angiogenesis via HIF-1α-Mediated VEGF Secretion by Activating P70S6 Kinase and Benefits Wound Healing in Genetically Diabetic Mice. Experimental & Molecular Medicine, 49, Arti-cle No. 387. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Greaves, N.S., Ashcroft, K.J., Baguneid, M. and Bayat, A. (2013) Current Understanding of Molecular and Cellular Mechanisms in Fibroplasia and Angiogenesis during Acute Wound Healing. Journal of Dermatological Science, 72, 206-217. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Shibuya, M. (2011) Vascular Endothelial Growth Factor (VEGF) and Its Receptor (VEGFR) Signaling in Angiogenesis: A Crucial Target for Anti- and Pro-Angiogenic Thera-pies. Genes & Cancer, 2, 1097-1105. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Cross, M.J. and Claesson-Welsh, L. (2001) FGF and VEGF Function in Angiogenesis: Signalling Pathways, Biological Responses and Therapeutic Inhibition. Trends in Pharmaco-logical Sciences, 22, 201-207. [Google Scholar] [CrossRef]
|
|
[20]
|
Raica, M. and Cimpean, A.M. (2010) Platelet-Derived Growth Factor (PDGF)/PDGF Receptors (PDGFR) Axis as Target for Antitumor and Antiangiogenic Therapy. Phar-maceuticals, 3, 572-599. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Fagiani, E. and Christofori, G. (2013) Angiopoi-etins in Angiogenesis. Cancer Letters, 328, 18-26. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Shi, Y.H. and Fang, W.G. (2004) Hypoxia-Inducible Factor-1 in Tumour Angiogenesis. World Journal of Gastroenterology, 10, 1082-1087. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Fraser, H.M. and Lunn, S.F. (2000) Angiogenesis and Its Control in the Female Reproductive System. British Medical Bulletin, 56, 787-797. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Nishida, N., Yano, H., Nishida, T., Kamura, T. and Kojiro, M. (2006) Angiogenesis in Cancer. Vascular Health and Risk Management, 2, 213-219.
|
|
[25]
|
Hanahan, D. and Weinberg, R.A. (2011) Hallmarks of Cancer: The Next Generation. Cell, 144, 646-674. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Nagy, J.A., Chang, S.H., Shih, S.C., Dvorak, A.M. and Dvorak, H.F. (2010) Heterogeneity of the Tumor Vasculature. Seminars in Thrombosis and Hemostasis, 36, 321-331. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Lugano, R., Ramachandran, M. and Dimberg, A. (2020) Tumor An-giogenesis: Causes, Consequences, Challenges and Opportunities. Cellular and Molecular Life Sciences, 77, 1745-1770. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Nagy, J.A., Chang, S.H., Dvorak, A.M. and Dvorak, H.F. (2009) Why Are Tumour Blood Vessels Abnormal and Why Is It Important to Know? British Journal of Cancer, 100, 865-869. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Selvendiran, K., Bratasz, A., Kuppusamy, M.L., Tazi, M.F., Rivera, B.K. and Kuppusamy, P. (2009) Hypoxia Induces Chemoresistance in Ovarian Cancer Cells by Activation of Signal Transducer and Activator of Transcription 3. International Journal of Cancer, 125, 2198-2204. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Zhang, K., Kong, X., Feng, G., Xiang, W., Chen, L., Yang, F., et al. (2018) Investigation of Hypoxia Networks in Ovarian Cancer via Bioinformatics Analysis. Journal of Ovarian Research, 11, Article No. 16. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Trachana, S.P., Pilalis, E., Gavalas, N.G., Tzannis, K., Papadodi-ma, O., Liontos, M., et al. (2016) The Development of an Angiogenic Protein “Signature” in Ovarian Cancer Ascites as a Tool for Biologic and Prognostic Profiling. PLOS ONE, 11, Article ID: e0156403. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Koizume, S., Ito, S., Nakamura, Y., Yoshihara, M., Furuya, M., Yamada, R., et al. (2015) Lipid Starvation and Hypoxia Synergistically Activate ICAM1 and Multiple Genes in an Sp1-Dependent Manner to Promote the Growth of Ovarian Cancer. Molecular Cancer, 14, Article No. 77. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Zhang, Y., Fan, N. and Yang, J. (2015) Expression and Clinical Significance of Hypoxia-Inducible Factor 1 Alpha, Snail and E-Cadherin in Human Ovarian Cancer Cell Lines. Molecu-lar Medicine Reports, 12, 3393-3399. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Koizume, S. and Miyagi, Y. (2015) Anti-Apoptotic Genes Are Syner-gistically Activated in OVSAYO Cells Cultured Under Conditions of Serunm Starvation and Hypoxia. Genomics Data, 5, 129-131. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Tse, A.C., Li, J.M., Chan, T.F., Wu, R.S. and Lai, K.P. (2015) Hypoxia Induces MiR-210, Leading to Anti-Apoptosis in Ovarian Follicular Cellls of Marine Medaka oryzias Melastig-ma. Aquatic Toxicology, 165, 189-296. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
田辉. 基因与癌症易感性研究[J]. 中国老年性杂志, 2007, 3(27): 590-600.
|
|
[37]
|
刘霞. 生活方式对卵巢癌发生率的影响[J]. 护理研究杂志, 2008(18): 1655-1657.
|
|
[38]
|
Landolfo, C., Froyman, W., Bourne, T., De Cock, B., Testa, A., Sladkevicius, P., et al. (2017) Perfor-mance of RMI, IOTA ADNEX and Simple Rules Risk Model in the Assessment of Adnexal Masses Not Classifiable Using the Revised Benign Easy Descriptors as First Step: A Novel Two-Step Strategy. Ultrasound in Obstetrics & Gy-necology, 50, 97-98. [Google Scholar] [CrossRef]
|
|
[39]
|
王润丽, 栗河舟, 张红彬. IOTA Logistic回归模型LR2预测卵巢良恶性肿瘤的价值[J]. 肿瘤影像学, 2018, 28(3): 207-210.
|
|
[40]
|
Pietryga, M., Horala, A., Paluszkie-wicz, A., Izycka, N., Tobola, K., Banach, P., et al. (2017) Diagnostic Accuracy of IOTA ADNEX and IOTA LR2 Model Compared with Subjective Assessment (SA) in Differentiating Benign and Malignant Ovarian Masses. Ultrasound in Obstetrics & Gynecology, 50, 187. [Google Scholar] [CrossRef]
|
|
[41]
|
向红, 冯文霞, 胡蓉, 范婷婷, 买迪努尔•阿不来提. 靶向超声造影TIC曲线各参数与卵巢癌移植瘤组织中CXCL12表达水平的相关性分析[J]. 中国超声医学杂志, 2019, 35(10): 949-952.
|
|
[42]
|
Tomao, F., Papa, A., Rossi, L., Strudel, M., Vici, P., Lo Russo, G., et al. (2013) Emerging Role of Cancer Stem Cells in the Biology and Treatment of Ovarian Cancer: Basic Knowledge and Therapeutic Possibilities for an Innovative Approach. Journal of Experimental & Clinical Cancer Research, 32, Article No. 48. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Peiretti, M., Bristow, R.E., Zapardiel, I., Gerardi, M., Zanagnolo, V., Biffi, R., et al. (2012) Rectosigmoid Resection at the Time of Primary Cytoreduction for Advanced Ovarian Cancer. A Multi-Center Analysis of Surgical and Oncological Outcomes. Gynecologic Oncology, 126, 220-223. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Chen, C.Y., Chang, H.P., Ng, K.K., Wang, C.C., Lai, C.H. and Chao, A. (2012) Long-Term Disease-Free Survival in Three Ovarian Cancer Patients with a Single Relapse. European Journal of Gynaecological Oncology, 33, 321-323.
|
|
[45]
|
Alharbi, M., Lai, A., Sharma, S., Kalita-De Croft, P., Godbole, N., Campos, A., et al. (2021) Extracellular Vesicle Transmission of Chemoresistance to Ovarian Cancer Cells Is Associ-ated with Hypoxia-Induced Expression of Glycolytic Pathway Proteins, and Prediction of Epithelial Ovarian Cancer Dis-ease Recurrence. Cancers, 13, Article No. 3388. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Kato, Y., Ozawa, S., Miyamoto, C., Maehata, Y., Suzuki, A., Maeda, T., et al. (2013) Acidic Extracellular Microenvironment and Cancer. Cancer Cell International, 13, Article No. 89. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Thews, O., Nowak, M., Sauvant, C. and Gekle, M. (2011) Hypox-ia-Induced Extracellular Acidosis Increases P- Glycoprotein Activity and Chemoresistance in Tumors in Vivo via p38 Signaling Pathway. In: LaManna, J., Puchowicz, M., Xu, K., Harrison, D. and Bruley, D., Eds., Oxygen Transport to Tissue XXXII, Vol. 701, Springer, Boston, 115-122. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Yu, L., Chen, X., Sun, X., Wang, L. and Chen, S. (2017) The Glycolytic Switch in Tumors: How Many Players Are Involved? Journal of Cancer, 8, 3430-3440. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Orr, B. and Edwards, R.P. (2018) Diag-nosis and Treatment of Ovarian Cancer. Hematology/Oncology Clinics of North America, 32, 943-964. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Chen, L., Endler, A. and Shibasaki, F. (2009) Hypoxia and Angio-genesis: Regulation of Hypoxia-Inducible Factors via Novel Binding Factors. Experimental & Molecular Medicine, 41, 849-857. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Aleksandra Kujawa, K. and Lisowska, K.M. (2015) Ovarian Cancer—From Biology to Clinic. Postępy Higieny i Medycyny Doświadczalnej, 69, 1275-1290. [Google Scholar] [CrossRef] [PubMed]
|