|
[1]
|
Ha, H., Han, D. and Choi, Y. (2009) TRAF-Mediated TNFR-Family Signaling. Current Protocols in Immunology, 87, 11.9D.1-11.9D.19. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Xie, P. (2013) TRAF Molecules in Cell Signaling and in Human Diseases. Journal of Molecular Signaling, 8, 7.
[Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Zotti, T., Scudiero, I., Vito, P. and Stilo, R. (2017) The Emerging Role of TRAF7 in Tumor Development. Journal of Cellular Physiology, 232, 1233-1238. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Zotti, T., Vito, P. and Stilo R. (2012) The Seventh Ring: Exploring TRAF7 Functions. Journal of Cellular Physiology, 227, 1280-1284. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Bouwmeester, T., Bauch, A., Ruffner, H., Bouwmeester, T., Bauch, A., Ruffner, H., Angrand, P.O., Bergamini, G., Croughton, K., Cruciat, C., Eberhard, D., Gagneur, J., Ghidelli, S., Hopf, C., Huhse, B., Mangano, R., Michon, A.M., Schirle, M., Schlegl, J., Schwab, M., Stein, M.A., Bauer, A., Casari, G., Drewes, G., Gavin, A.C., Jackson, D.B., Joberty, G., Neubauer, G., Rick, J., Kuster, B. and Superti-Furga, G. (2004) A Physical and Functional Map of the Human TNF-alpha/NF-kappa B Signal Transduction Pathway. Nature Cell Biology, 6, 97-105.
[Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Yang, J., Lin, Y. and Guo, Z. (2001) The Essential Role of MEKK3 in TNF-Induced NF-kappaB Activation. Nature Immunology, 2, 620-624. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Xu, L.G., Li, L.Y. and Shu, H.B. (2004) TRAF7 Potentiates MEKK3-Induced AP1 and CHOP Activation and Induces Apoptosis. Journal of Biological Chemistry, 279, 17278-17282. [Google Scholar] [CrossRef]
|
|
[8]
|
Karin, M. and Gallagher, E. (2009) TNFR Signaling: Ubiquitin-Conjugated Traffic Signals Control Stop-and-Go for MAPK Signaling Complexes. Immunological Reviews, 228, 225-240.
[Google Scholar] [CrossRef]
|
|
[9]
|
Hacker, H., Tseng, P.H. and Karin M. (2011) Expanding TRAF Function: TRAF3 as a Tri-Faced Immune Regulator. Nature Reviews Immunology, 11, 457-468. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Zotti, T., Uva, A., Ferravante, A., Campos, E.I., Lane, W.S., Sanchez, I. and Dynlacht, B.D. (2011) TRAF7 Protein Promotes Lys-29-Linked Polyubiquitination of IkappaB Kinase (IKKgamma)/NF-kappaB Essential Modulator (NEMO) and p65/RelA Protein and Represses NF-kappaB Activation, Journal of Biological Chemistry, 286, 22924-22933.
[Google Scholar] [CrossRef]
|
|
[11]
|
Tsikitis, M., Acosta-Alvear, D. and Blais, A. (2010) Traf7, a MyoD1 Transcriptional Target, Regulates Nuclear Factor-kappaB Activity during Myogenesis, EMBO Reports, 11, 969-976. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Scudiero, I., Zotti, T., Ferravante, A., Vessichelli, M., Reale, C., Masone, M.C., Leonardi, A., Vito, P. and Stilo, R. (2012) Tumor Necrosis Factor (TNF) Receptor-Associated Factor 7 Is Required for TNFalpha-Induced Jun NH2-Terminal Kinase Activation and Promotes Cell Death by Regulating Polyubiquitination and Lysosomal Degradation of c-FLIP Protein. Journal of Biological Chemistry, 287, 6053-6061. [Google Scholar] [CrossRef]
|
|
[13]
|
Wang, L., Wang, L., Zhang, S., Qu, G., Zhang, D., Li, S. and Liu, S. (2013) Downregulation of Ubiquitin E3 Ligase TNF Receptor-Associated Factor 7 Leads to Stabilization of p53 in Breast Cancer. Oncology Reports, 29, 283-287.
[Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Chastagner, P., Israel, A. and Brou, C. (2006) Itch/AIP4 Mediates Deltex Degradation through the Formation of K29-Linked Polyubiquitin Chains. EMBO Reports, 7, 1147-1153. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Morita, Y., Kanei-Ishii, C., Nomura, T. and Ishii, S. (2005) TRAF7 Sequesters c-Myb to the Cytoplasm by Stimulating Its Sumoylation. Molecular Biology of the Cell, 16, 5433-5444. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Mucenski, M.L., Mclain, K., Kier, A.B., Swerdlow, S.H., Schreiner, C.M., Miller, T.A., Pietryga, D.W., Scott, W.J., Potter, S. and Steven, A, (1991) functional c-myb Gene Is Required for Normal Murine Fetal Hepatic Hematopoiesis. Cell, 65, 677-689. [Google Scholar] [CrossRef]
|
|
[17]
|
Keats, J.J., Fonseca, R., Chesi, M., Schop, R., Bake,r A., Chng, W.J., Van, W.S., Tiedemann, R. Shi, C.X., Sebag M., Braggio, E., Henry, T., Zhu, Y.X., Fogle, H., Price-Troska, T., Ahmann, G., Mancini, C., Brents, L.A., Kumar, S., Greipp, P., Dispenzieri, A., Bryant, B., Mulligan, G., Bruhn, L., Barrett, M., Valdez, R., Trent, J., Stewart, A.K., Carpten, J. and Bergsagel, P.L. (2007) Promiscuous Mutations Activate the Noncanonical NF-kappaB Pathway in Multiple Myeloma. Cancer Cell, 12, 131-144. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Demchenko, Y.N., Glebov, O.K., Zingone AKeats, J.J., Bergsagel, P.L. and Kuehl, W.M. (2010) Classical and/or Alternative NF-kappaB Pathway Activation in Multiple Myeloma. Blood, 115, 3541-3552.
[Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Annunziata, C.M., Davis, R.E., Demchenko, Y., Bellamy, W., Gabrea, A., Zhan, F., Lenz, G. Hanamura, I., Wright, G., Xiao, W., Dave, S., Hurt, E.M., Tan, B., Zhao, H., Stephens, O., Santra, M., Williams, D.R., Dang, L., Barlogie, B., Shaughnessy, J.D.J., Kuehl, W.M. and Staudt, L.M. (2007) Frequent Engagement of the Classical and Alternative NF-kappaB Pathways by Diverse Genetic Abnormalities in Multiple Myeloma. Cancer Cell, 12, 115-130.
[Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Nagel, I., Bug, S., Tonnies, H., Ammerpohl, O., Richter, J., Vater, I., Callet-Bauchu, E., Calasanz, M.J., Martinez- Climent, J.A., Bastard, C., Salido, M., Schroers, E., Martin-Subero, J.I., Gesk, S., Harder, L., Majid, A., Dyer, M.J. and Siebert, R. (2009) Biallelic Inactivation of TRAF3 in a Subset of B-Cell Lymphomas with Interstitial del(14)(q24.1q32.33). Leukemia, 23, 2153-2155. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Otto, C., Giefing, M., Massow, A., Vater, I., Gesk, S., Schlesner, M., Richter, J., Klapper, W., Hansmann, M.L., Siebert, R. and Kuppers, R. (2012) Genetic Lesions of the TRAF3 and MAP3K14 Genes in Classical Hodgkin Lymphoma. British Journal of Haematology, 157, 702-708. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Braggio, E., Keats, J.J., Leleu, X., Van Wier, S., Jimenez-Zepeda, V.H., Valdez, R., Schop, R.F. Price-Troska, T., Henderson, K., Sacco, A., Azab, F., Greipp, P., Gertz, M., Hayman, S. and Rajkumar, S.V. (2009) Identification of Copy Number Abnormalities and Inactivating Mutations in Two Negative Regulators of Nuclear Factor-kappaB Signaling Pathways in Waldenstrom’s Macroglobulinemia. Cancer Research, 69, 3579-3588.
[Google Scholar] [CrossRef]
|
|
[23]
|
Compagno, M., Lim, W.K., Grunn, A., Nandula, S.V., Brahmachary, M., Shen, Q., Bertoni, F., Ponzoni, M., Scandurra, M., Califano, A., Bhagat, G., Chadburn, A., Dalla-Favera, R. and Pasqualucci, L. (2009) Mutations of Multiple Genes Cause Deregulation of NF-kappaB in Diffuse Large B-Cell Lymphoma. Nature, 459, 717-721.
[Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Camilleri-Broet, S., Cremer, I., Marmey, B., Comperat, E., Viguie, F., Audouin, J., Rio, M.C., Fridman, W.H., Sautes- Fridman, C. and Regnier, C.H. (2007) TRAF4 Overexpression Is a Common Characteristic of Human Carcinomas. Oncogene, 26, 142-147. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Starczynowski, D.T., Lockwood, W.W., Delehouzee S., Chari R., Wegrzyn, J., Fuller M., Tsao, M.S., Lam, S., Gazdar, A.F., Lam, W.L. and Karsan, A. (2011) TRAF6 Is an Amplified Oncogene Bridging the RAS and NF-kappaB Pathways in Human Lung Cancer. Journal of Clinical Investigation, 121, 4095-4105. [Google Scholar] [CrossRef]
|
|
[26]
|
Sun, H., Li, X., Fan, L., Wu, G., Li, M. and Fang, J. (2014) TRAF6 Is Upregulated in Colon Cancer and Promotes Proliferation of Colon Cancer Cells. The International Journal of Biochemistry & Cell Biology, 53, 195-201.
[Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Meng, Q., Zheng, M., Liu, H., Song, C., Zhang, W., Yan, J., Qin, L. and Liu, X. (2012) TRAF6 Regulates Proliferation, Apoptosis, and Invasion of Osteosarcoma Cell. Molecular and Cellular Biochemistry, 371, 177-186.
[Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Rong, Y., Wang, D., Wu, W., Jin, D., Kuang, T., Ni, X., Zhang, L. and Lou, W. (2014) TRAF6 Is Over-Expressed in Pancreatic Cancer and Promotes the Tumorigenicity of Pancreatic Cancer Cells. Medical Oncology, 31, 260.
[Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Bi, W.L., Zhang, M., Wu, W.W., Mei, Y. and Dunn, I.F. (2016) Meningioma Genomics: Diagnostic, Prognostic, and Therapeutic Applications. Frontiers in Surgery, 3, Article No. 40. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Lee, S., Karas, P.J., Hadley, C.C., Bayley, V.J., Khan, A.B., Jalali, A., Sweeney, A.D., Klisch, T.J. and Patel, A.J. (2019) The Role of Merlin/NF2 Loss in Meningioma Biology. Cancers (Basel), 11, 1633.
[Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Curto, M. and Mcclatchey, A.I. (2008) Nf2/Merlin: A Coordinator of Receptor Signalling and Intercellular Contact. British Journal of Cancer, 98, 256-262. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Plotkin, S.R., James, M.F., Han, S., Gusella, J.F., Manning, B.D., Stemmer-Rachamimov, A.O., Polizzano, C. and Ramesh, V. (2009) NF2/Merlin Is a Novel Negative Regulator of mTOR Complex 1, and Activation of mTORC1 Is Associated with Meningioma and Schwannoma Growth. Molecular and Cellular Biology, 29, 4250-4261.
[Google Scholar] [CrossRef]
|
|
[33]
|
Clark, V.E., Erson-Omay, E.Z., Serin, A., Yin, J., Cotney, J., Ozduman, K., Avsar, T., Li J., Murray, P.B., Henegariu, O., Yilmaz, S., Gunel, J.M., Carrion-Grant, G., Yilmaz, B., Grady, C., Tanrikulu, B., Bakircioglu, M., Kaymakcalan, H., Caglayan, A.O., Sencar, L., Ceyhun, E., Atik, A.F., Bayri, Y., Bai, H., Kolb, L.E., Hebert, R.M., Omay, S.B., Mishra-Gorur, K., Choi, M., Overton, J.D., Holland, E.C., Mane, S., State, M.W., Bilguvar, K., Baehring, J.M., Gutin, P.H., Piepmeier, J.M., Vortmeyer, A., Brennan, C.W., Pamir, M.N. Kilic, T., Lifton, R.P., Noonan, J.P., Yasuno, K. and Gunel, M. (2013) Genomic Analysis of Non-NF2 Meningiomas Reveals Mutations in TRAF7, KLF4, AKT1, and SMO. Science, 339, 1077-1080. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Brastianos, P.K., Horowitz, P.M, Santagata, S., Jones, R.T., McKenna, A., Getz, G., Ligon, K.L., Palescandolo, E., Van., H.P., Ducar, M.D., Raza, A., Sunkavalli A., Macconaill, L.E., Stemmer-Rachamimov, A.O., Louis, D.N., Hahn, W.C., Dunn, I.F. and Beroukhim, R. (2013) Genomic Sequencing of Meningiomas Identifies Oncogenic SMO and AKT1 Mutations. Nature Genetics, 45, 285-289. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Reuss, D.E., Piro, R.M., Jones, D.T., Reuss, D.E., Piro, R.M., Jones, D.T., Simon, M., Ketter, R., Kool, M., Becker, A., Sahm, F., Pusch, S., Meyer, J., Hagenlocher, C., Schweizer, L., Capper, D., Kickingereder, P., Mucha, J., Koelsche, C., Jager N., Santarius, T., Tarpey, P.S., Stephens, P.J., Andrew, F.P., Wellenreuther, R., Kraus, J., Lenartz, D., Herold- Mende, C., Hartmann, C., Mawrin, C., Giese, N., Eils, R., Collins, V.P., Konig, R., Wiestler, O.D., Pfister, S.M. and von Deimling, A. (2013) Secretory Meningiomas Are Defined by Combined KLF4 K409Q and TRAF7 Mutations. Acta Neuropathologica, 125, 351-358. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Clark, V.E., Harmanci, A.S., Bai, H., Youngblood, M.W., Lee, T.I., Baranoski, J.F., Ercan-Sencicek, A.G., Abraham, B.J., Weintraub, A.S., Hnisz, D., Simon, M., Krischek, B., Erson-Omay, E.Z., Henegariu, O., Carrion-Grant, G., Mishra- Gorur, K., Duran D., Goldmann, J.E., Schramm, J., Goldbrunner, R., Piepmeier, J.M., Vortmeyer, A.O., Gunel, J.M., Bilguvar, K., Yasuno, K., Young, R.A. and Gunel, M. (2016) Recurrent Somatic Mutations in POLR2A Define a Distinct Subset of Meningiomas. Nature Genetics, 48, 1253-1259. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Yuzawa, S., Nishihara, H. and Tanaka, S. (2016) Genetic Landscape of Meningioma. Brain Tumor Pathology, 33, 237- 247. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K. and Yamanaka, S. (2007) Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors. Cell, 131, 861-872.
[Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Zammarchi F., Morelli, M., Menicagli, M., Di Cristofano, C., Zavaglia, K., Paolucci, A., Campani, D., Aretini, P., Boggi, U., Mosca, F., Cavazzana, A., Cartegni, L., Bevilacqua, G. and Mazzanti, C.M. (2011) KLF4 Is Novel Candidate Tumor Suppressor Gene in Pancreatic Ductal Carcinoma. The American Journal of Pathology, 178, 361-372.
[Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Yu, F., Li, J., Chen, H., Fu, J., Ray, S., Huang, S., Zheng, H. and Ai, W. (2011) Kruppel-Like Factor 4 (KLF4) Is Required for Maintenance of Breast Cancer Stem Cells and for Cell Migration and Invasion, Oncogene, 30, 2161-2172.
[Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Yoon, H.S. and Yang, V.W. (2004). Requirement of Krüppel-Like Factor 4 in Preventing Entry into Mitosis Following DNA Damage. Journal of Biological Chemistry, 279, 5035-5041. [CrossRef]
|
|
[42]
|
Yoon, H.S., Ghaleb, A.M., Nandan, M.O., Hisamuddin, I.M., Dalton, W.B. and Yang, V.W. (2005) Krüppel-Like Factor 4 Prevents Centrosome Amplification Following γ-Irradiation-Induced DNA Damage. Oncogene, 24, 4017-4025.
[Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Tang, H., Zhu, H., Wang, X., Hua, L., Li, J., Xie, Q., Chen, X., Zhang, T. and Gong, Y. (2017) KLF4 Is a Tumor Suppressor in Anaplastic Meningioma Stem-Like Cells and Human Meningiomas. Journal of Molecular Cell Biology, 9, 315-324. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Najm, P, Zhao, P, Steklov, M., Najm, P., Zhao, P., Steklov, M., Sewduth, R.N., Baietti, M.F., Pandolfi, S., Criem, N., Lechat, B., Maia, T.M., Van, H.D., Corthout, N., Eyckerman, S., Impens, F. and Sablina, A.A. (2021) Loss-of-Function Mutations in TRAF7 and KLF4 Cooperatively Activate RAS-Like GTPase Signaling and Promote Meningioma Development. Cancer Research, 81, 4218-4229. [Google Scholar] [CrossRef]
|
|
[45]
|
Vivanco, I. and Sawyers, C.L. (2002) The Phosphatidylinositol 3-Kinase AKT Pathway in Human Cancer. Nature Reviews Cancer, 2, 489-501. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Yang, H., Testa, J.R. and Carbone, M. (2008) Mesothelioma Epidemiology, Carcinogenesis, and Pathogenesis. Current Treatment Options in Oncology, 9, 147-157. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Bianchi, A.B., Mitsunaga, S.I., Cheng, J.Q., Cheng, J.Q., Klein, W.M., Jhanwar, S.C., Seizinger, B., Kley, N., Klein- Szanto, A.J. and Testa, J.R. (1995) High Frequency of Inactivating Mutations in the Neurofibromatosis Type 2 Gene (NF2) in Primary Malignant Mesotheliomas. Proceedings of the National Academy of Sciences of the United States of America, 92, 10854-10858. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Guo, G., Chmielecki, J., Goparaju, C., Heguy, A., Dolgalev, I., Carbone, M., Seepo, S., Meyerson, M. and Pass, H.I. (2015) Whole-Exome Sequencing Reveals Frequent Genetic Alterations in BAP1, NF2, and CUL1 in Malignant Pleural Mesothelioma. Cancer Research, 75, 264-269. [Google Scholar] [CrossRef]
|
|
[49]
|
Zhao, R., Choi, B.Y., Lee, M.H., Bode, A.M. and Dong, Z. (2016) Implications of Genetic and Epigenetic Alterations of CDKN2A (p16(INK4a)) in Cancer. EBioMedicine, 8, 30-39. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Wang, A., Papneja, A., Hyrcza, M., Al-Habeeb, A. and Ghazarian, D. (2016) Gene of the Month: BAP1. Journal of Clinical Pathology, 69, 750-753. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Bueno, R., Stawiski, E.W., Goldstein, L.D., Durinck, S. De Rienzo, A., Modrusan, Z., Gnad, F., Nguyen, T.T., Jaiswal, B.S., Chirieac, L.R., Sciaranghella, D., Dao, N., Gustafson, C.E., Munir, K.J., Hackney, J.A., Chaudhuri, A., Gupta, R., Guillory, J., Toy, K., Ha, C., Chen, Y.J., Stinson, J., Chaudhuri, S., Zhang, N., Wu, T.D., Sugarbaker, D.J., de Sauvage, F.J., Richards,, W.G. and Seshagiri, S. (2016) Comprehensive Genomic Analysis of Malignant Pleural Mesothelioma Identifies Recurrent Mutations, Gene Fusions and splicing Alterations. Nature Genetics, 48, 407-416.
[Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Stevers, M., Rabban, J.T., Garg, K., Van, Z.J. Onodera, C. Grenert, J.P., Yeh, I., Bastian, B.C., Zaloudek, C. and Solomon, D. (2019), A Well-Differentiated Papillary Mesothelioma of the Peritoneum Is Genetically Defined by Mutually Exclusive Mutations in TRAF7 and CDC42. Modern Pathology, 32, 88-99.
[Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Allen, T.C., Cagle, P.T., Churg, A.M., Colby, T.V., Gibbs, A.R., Hammar, S.P., Corson, J.M., Grimes, M.M., Ordonez, N.G., Roggli, V., Travis, W.D. and Wick, M.R. (2005) Localized Malignant Mesothelioma. The American Journal of Surgical Pathology, 29, 866-873. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Goode, B., Joseph, N.M., Stevers, M., Van, Z.J., Onodera, C., Talevich, E., Grenert, J.P., Yeh, I., Bastian, B.C., Phillips, J.J., Garg, K., Rabban, J.T., Zaloudek, C. and Solomon, D.A. (2018) Adenomatoid Tumors of the Male and Female Genital Tract Are Defined by TRAF7 Mutations That Drive Aberrant NF-κB Pathway Activation. Modern Pathology, 31, 660-673. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Klein, C.J., Wu, Y., Jentoft, M.E., Mer, G., Spinner, R.J., Dyck, P.J., Dyck, P.J. and Mauermann, M.L. (2017) Genomic Analysis Reveals Frequent TRAF7 Mutations in Intraneural Perineuriomas. Annals of Neurology, 81, 316-321.
[Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Tamura, D., Maeda, D., Halimi, S.A., Okimura, M. and Goto, A. (2018) Adenomatoid Tumour of the Uterus Is Frequently Associated with Iatrogenic Immunosuppression. Histopathology, 73, 1013-1022.
[Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Mcglynn, K.A., Petrick, J.L. and London, W.T. (2015) Global Epidemiology of Hepatocellular Carcinoma: An Emphasis on Demographic and Regional Variability. Clinical Liver Disease, 19, 223-238.
[Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Jiang, Y., Han, Q., Zhao, H. and Zhang, J. (2021) The Mechanisms of HBV-Induced Hepatocellular Carcinoma. Journal of Hepatocellular Carcinoma, 8, 435-450. [Google Scholar] [CrossRef]
|
|
[59]
|
Forner, A., Reig, M. and Bruix, J. (2018) Hepatocellular Carcinoma. The Lancet, 391, 1301-1314.
[Google Scholar] [CrossRef]
|
|
[60]
|
Zhang, Q., Zhang, X. and Dong, W. (2021) TRAF7 Contributes to Tumor Progression by Promoting Ubiquitin-Proteasome Mediated Degradation of P53 in Hepatocellular Carcinoma. Cell Death Discovery, 7, 352.
[Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
He, H., Wu, Z., Li, S., Chen, K., Wang, D., Zou, H., Chen, H., Li, Y., Liu, Z. and Qu, C. (2020) TRAF7 Enhances Ubiquitin-Degradation of KLF4 to Promote Hepatocellular Carcinoma Progression. Cancer Letters, 469, 380-389.
[Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Sumie, S., Kuromatsu, R., Okuda, K., Ando, E., Takata, A., Fukushima, N., Watanabe, Y., Kojiro, M. and Sata, M. (2008) Microvascular Invasion in Patients with Hepatocellular Carcinoma and Its Predictable Clinicopathological Factors. Annals of Surgical Oncology, 15, 1375-1382. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Ghaleb, A.M. and Yang, V.W. (2017) Kruppel-Like Factor 4 (KLF4): What We Currently Know. Gene, 611, 27-37.
[Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Li, Q., Gao, Y., Jia, Z., Mishra, L. and Xie, K. (2012) Dysregulated Kruppel-Like Factor 4 and Vitamin D Receptor Signaling Contribute to Progression of Hepatocellular Carcinoma. Gastroenterology, 143, 799-810e792.
[Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Goh, G., Walradt, T., Markarov, V., Blom, A., Riaz N., Doumani, R., Stafstrom, K., Moshiri, A., Yelistratova, L. and Levinsohn, J. (2016) Mutational Landscape of MCPyV-Positive and MCPyV-Negative Merkel Cell Carcinomas with Implications for Immunotherapy. Oncotarget, 7, 3403-3415. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Radu, M., Semenova, G., Kosoff, R. and Chernoff, J. (2014) PAK Signalling during the Development and Progression of Cancer. Nature Reviews Cancer, 14, 13-25. [Google Scholar] [CrossRef] [PubMed]
|