|
[1]
|
Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Herbst, R.S., Baas, P., Kim, D.-W., Felip, E., Pérez-Gracia, J.L., Han, J.Y., et al. (2016) Pembrolizumab versus Docetaxel for Previously Treated, PD-L1-Positive, Advanced Non-Small-Cell Lung Cancer (KEYNOTE-010): A Randomised Controlled Trial. Lancet, 387, 1540-1550. [Google Scholar] [CrossRef]
|
|
[3]
|
Luo, W., Wang, Z., Zhang, T., Yang, L., Xian, J., Li, Y., et al. (2021) Immunotherapy in Non-Small Cell Lung Cancer: Rationale, Recent Advances and Future Perspectives. Precision Clinical Medicine, 4, 258-270. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Carbone, D.P., Reck, M., Paz-Ares, L., Creelan, B., Horn, L., Steins, M., et al. (2017) First-Line Nivolumab in Stage IV or Recurrent Non-Small-Cell Lung Cancer. New England Journal of Medicine, 376, 2415-2426. [Google Scholar] [CrossRef]
|
|
[5]
|
Abdel-Wahab, N., Shah, M. and Suarez-Almazor, M.E. (2016) Ad-verse Events Associated with Immune Checkpoint Blockade in Patients with Cancer: A Systematic Review of Case Re-ports. PLOS ONE, 11, Article ID: e0160221. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Chung, H.C., Ros, W., Delord, J.-P., Perets, R., Italiano, A., Shapira-Frommer, R., et al. (2019) Efficacy and Safety of Pembrolizumab in Previously Treated Advanced Cervical Cancer: Results from the Phase II KEYNOTE-158 Study. Journal of Clinical Oncology, 37, 1470-1478. [Google Scholar] [CrossRef]
|
|
[7]
|
陈冠璇, 宋现让. 肺癌PD1/PD-L1免疫检查点治疗疗效预测标志物第18届世界肺癌大会相关研究综述[J]. 中国肺癌杂志, 2018, 21(9): 697-702.
|
|
[8]
|
Wu, H.-X., Wang, Z.-X., Zhao, Q., Chen, D.L., He, M.M., Yang, L.P., et al. (2019) Tumor Mutational and Indel Burden: A Systematic Pan-Cancer Evaluation as Prognostic Biomarkers. Annals of Translational Medicine, 7, Article No. 640. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Goodman, A.M., Kato, S., Bazhenova, L., Patel, S.P., Frampton, G.M., Miller, V., et al. (2017) Tumor Mutational Burden as an Independent Predictor of Response to Immunotherapy in Diverse Cancers. Molecular Cancer Therapeutics, 16, 2598-2608. [Google Scholar] [CrossRef]
|
|
[10]
|
Liu, Y., Huang, K., Yang, Y., Wu, Y. and Gao, W. (2022) Prediction of Tumor Mutation Load in Colorectal Cancer Histopathological Images Based on Deep Learning. Frontiers in Oncology, 12, Article ID: 906888. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Xu, F., Guan, Y., Zhang, P., Xue, L., Ma, Y., Gao, M., et al. (2022) Tumor Mutational Burden Presents Limiting Effects on Predicting the Efficacy of Immune Checkpoint Inhibitors and Prognostic Assessment in Adrenocortical Carcinoma. BMC Endocrine Disorders, 22, Article No. 130. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Fumet, J.-D., Truntzer, C., Yarchoan, M. and Ghiringhelli, F. (2020) Tumour Mutational Burden as a Biomarker for Immunotherapy: Current Data and Emerging Concepts. European Journal of Cancer, 131, 40-50. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Klebanov, N., Artomov, M., Goggins, W.B., Daly, E., Daly, M.J. and Tsao, H. (2019) Burden of Unique and Low Prevalence Somatic Mutations Correlates with Cancer Survival. Scien-tific Reports, 9, Article No. 4848. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Samstein, R.M., Lee, C.-H., Shoushtari, A.N., Hellmann, M.D., Shen, R., Janjigian, Y.Y., et al. (2019) Tumor Mutational Load Predicts Survival after Immunotherapy across Multiple Cancer Types. Nature Genetics, 51, 202-206. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Cao, D., Xu, H., Xu, X., Guo, T. and Ge, W. (2019) High Tumor Mutation Burden Predicts Better Efficacy of Immunotherapy: A Pooled Analysis of 103078 Cancer Patients. Oncoim-munology, 8, Article ID: e1629258. [Google Scholar] [CrossRef]
|
|
[16]
|
Marcus, L., Fashoyin-Aje, L.A., Donoghue, M., Yuan, M., Rodriguez, L., Gallagher, P.S., et al. (2021) FDA Approval Summary: Pembrolizumab for the Treatment of Tumor Mu-tational Burden-High Solid Tumors. Clinical Cancer Research, 27, 4685-4689. [Google Scholar] [CrossRef]
|
|
[17]
|
Cuppens, K., Baas, P., Geerdens, E., Cruys, B., Froyen, G., Decoster, L., et al. (2022) HLA-I Diversity and Tumor Mutational Burden by Comprehensive Next-Generation Se-quencing as Predictive Biomarkers for the Treatment of Non-Small Cell Lung Cancer with PD-(L)1 Inhibitors. Lung Cancer, 170, 1-10. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Rizvi, H., Sanchez-Vega, F., La, K., Chatila, W., Jonsson, P., Halpenny, D., et al. (2018) Molecular Determinants of Response to Anti-Programmed Cell Death (PD)-1 and An-ti-Programmed Death-Ligand 1 (PD-L1) Blockade in Patients with Non-Small-Cell Lung Cancer Profiled With Targeted Next-Generation Sequencing. Journal of Clinical Oncology, 36, 633-641. [Google Scholar] [CrossRef]
|
|
[19]
|
Valero, C., Lee, M., Hoen, D., Zehir, A., Berger, M.F., Seshan, V.E., et al. (2021) Response Rates to Anti-PD-1 Immunotherapy in Microsatellite-Stable Solid Tumors with 10 or More Mutations per Megabase. JAMA Oncology, 7, 739-743. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
McGrail, D.J., Pilie, P.G., Rashid, N.U., Voorwerk, L., Slagter, M., Kok, M., et al. (2021) High Tumor Mutation Burden Fails to Predict Immune Checkpoint Blockade Response across All Cancer Types. Annals of Oncology, 32, 661-672. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Ready, N., Hellmann, M.D., Awad, M.M., Otterson, G.A., Gutierrez, M., Gainor, J.F., et al. (2019) First-Line Nivolumab Plus Ipilimumab in Advanced Non-Small-Cell Lung Cancer (CheckMate 568): Outcomes by Programmed Death Ligand 1 and Tumor Mutational Burden as Biomarkers. Journal of Clinical Oncology, 37, 992-1000. [Google Scholar] [CrossRef]
|
|
[22]
|
Yarchoan, M., Albacker, L.A., Hopkins, A.C., Montesion, M., Murugesan, K., Vithayathil, T.T., et al. (2019) PD-L1 Expression and Tumor Mutational Burden Are Independent Bi-omarkers in Most Cancers. JCI Insight, 4, Article ID: e126908. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Buder-Bakhaya, K., Hassel, J.C. (2018) Biomarkers for Clinical Benefit of Immune Checkpoint Inhibitor Treatment—A Review from the Melanoma Perspective and Beyond. Frontiers in Immunology, 9, Article No. 1474. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Rizvi, N.A., Hellmann, M.D., Snyder, A., Kvistborg, P., Makarov, V., Havel, J.J., et al. (2015) Cancer Immunology. Mutational Landscape Determines Sensitivity to PD-1 Blockade in Non-Small Cell Lung Cancer. Science, 348, 124-128. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Hellmann, M.D., Nathanson, T., Rizvi, H., Creelan, B.C., Sanchez-Vega, F., Ahuja, A., et al. (2018) Genomic Features of Response to Combination Immunotherapy in Patients with Advanced Non-Small-Cell Lung Cancer. Cancer Cell, 33, 843-852.e4. [Google Scholar] [CrossRef] [PubMed]
|