|
[1]
|
李树民, 邸韬, 邸仕虎. 模块化工业机器人运动控制系统研究与设计[J]. 中国建材科技, 2019, 28(2): 108+107.
|
|
[2]
|
朱威, 郭宪, 方勇纯, 张学有. 可重构模块化蛇形机器人研制及多运动模态研究[J]. 信息与控制, 2020, 49(1): 69-77.
|
|
[3]
|
祝洲杰, 甘伟, 黄畅, 胡章豪, 冯晨韬. 小型模块化多功能科教机器人的设计与实践研究[J]. 机电工程技术, 2020, 49(10): 138-140.
|
|
[4]
|
吴文强, 管贻生, 朱海飞, 苏满佳, 李怀珠, 周雪峰. 面向任务的可重构模块化机器人构型设计[J]. 哈尔滨工业大学学报, 2014, 46(3): 93-98.
|
|
[5]
|
田闯. 工业机器人的现状及发展趋势研究[J]. 中国管理信息化, 2019, 22(20): 156.
|
|
[6]
|
陈维. 模块化自装配机器人的系统设计与研究[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工业大学, 2020.
|
|
[7]
|
李能菲, 常辉, 王奎. 基于LabVIEW的多控模块化机器人控制设计[J]. 电脑知识与技术, 2022(11): 107-109.
|
|
[8]
|
Pezent, E., Rose, C.G., Deshpande, A.D., et al. (2017) Design and Characterization of the Openwrist: A Robotic Wrist Exoskeleton for Coordinated Hand-Wrist Rehabilitation. 2017 International Conference on Rehabilitation Robotics (ICORR), London, 17-20 July 2017, 720-725. [Google Scholar] [CrossRef]
|
|
[9]
|
郦滢澄, 虞泽宇, 张龙涵, 郭兆阳, 马新玲. 多功能模块化居家整理机器人的结构设计[J]. 轻工机械, 2020, 38(6): 86-91.
|
|
[10]
|
吴文强, 管贻生, 朱海飞, 苏满佳, 李怀珠, 周雪峰. 面向任务的可重构模块化机器人构型设计[J]. 哈尔滨工业大学学报, 2014, 46(3): 93-98.
|
|
[11]
|
机器人大讲堂. 深度解析康复机器人的现状、机遇和未来[EB/OL].
http://www.compsys.ia.ac.cn/kfjiqiren.html, 2018-04-12.
|
|
[12]
|
戴野, 张启昊, 高语斐, 等. 自重构模块化机器人模块设计综述[J]. 哈尔滨理工大学学报, 2021, 26(5): 34-43. [Google Scholar] [CrossRef]
|
|
[13]
|
薛建明. 医疗外骨骼康复机器人的发展[J]. 医学信息, 2019, 32(9): 11-13.
|
|
[14]
|
Jacob, S., Menon, V.G., Al-Turjman, F. and Mostarda, L. (2019) Artificial Muscle Intelligence System with Deep Learning for Post-Stroke Assistance and Rehabilitation. IEEE Access, 7, 133463-133473. [Google Scholar] [CrossRef]
|
|
[15]
|
韩稷钰, 王衍鸿, 万大千. 下肢外骨骼康复机器人的研究进展及发展趋势[J]. 上海交通大学学报(医学版), 2022, 42(2): 241-246. [Google Scholar] [CrossRef]
|
|
[16]
|
Lee, W., Kim, S., Kim, B., Lee, C., Chung, Y.A., Kim, L. and Yoo, S.-S. (2017) Non-Invasive Transmission of Sensorimotor Information in Humans Using an EEG/Focused Ultrasound Brain-to-Brain Interface. PLOS ONE, 12, e0178476. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Sarac, M., Solazzi, M. and Frisoli, A. (2019) Design Requirements of Generic Hand Exoskeletons and Survey of Hand Exoskeletons for Rehabilitation, Assistive, or Haptic Use. IEEE Transactions on Haptics, 12, 400-413. [Google Scholar] [CrossRef]
|
|
[18]
|
Shepherd, M.K. and Rouse, E.J. (2017) Design and Validation of a Torque-Controllable Knee Exoskeleton for Sit-to-Stand Assistance. IEEE/ASME Transactions on Mechatronics, 22, 1695-1704.
|
|
[19]
|
Ao, D., Song, R. and Gao, J. (2017) Movement Performance of Human-Robot Cooperation Control Based on EMG-Driven Hill-Type and Proportional Models for an Ankle Power-Assist Exoskeleton Robot. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 25, 1125-1134. [Google Scholar] [CrossRef]
|
|
[20]
|
Jacob, S., et al. (2020) An Adaptive and Flexible Brain Energized Full Body Exoskeleton with IoT Edge for Assisting the Paralyzed Patients. IEEE Access, 8, 100721-100731. [Google Scholar] [CrossRef]
|
|
[21]
|
Chen, B., Zi, B., Wang, Z., Qin, L. and Liao, W.H. (2019) Knee Exoskeletons for Gait Rehabilitation and Human Performance Augmentation: A State-of-the-Art. Mechanism and Machine Theory, 134, 499-511. [Google Scholar] [CrossRef]
|
|
[22]
|
李超. 外骨骼下肢康复机器人系统开发及其柔顺控制研究[D]: [硕士学位论文]. 杭州: 浙江理工大学, 2019.
|
|
[23]
|
Feng, J.K. and Liu, J.G. (2021) Configuration Analysis of a Chain-Type Reconfigurable Modular Robot Inspired by Normal Alkane. Science China (Technological Sciences), 64, 1167-1176. [Google Scholar] [CrossRef]
|
|
[24]
|
Ma, H., Chen, B., Qin, L. and Liao, W.H. (2017) Design and Testing of a Regenerative Magnetorheological Actuator for Assistive Knee Braces. Smart Materials and Structures, 26, Article ID: 035013. [Google Scholar] [CrossRef]
|
|
[25]
|
Moltedo, M., Bacek, T., Junius, K., Vanderborght, B. and Lefeber, D. (2016) Mechanical Design of a Lightweight Compliant and Adaptable Active Ankle Foot Orthosis. Proceedings of the 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob), Singapore, 26-29 June 2016, 1224-1229. [Google Scholar] [CrossRef]
|
|
[26]
|
Lugrís, U., Carlín, J., Luaces, A. and Cuadrado, J. (2013) Gait Analysis System for Spinal Cord Injured Subjects Assisted by Active Orthoses and Crutches. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-Body Dynamics, 227, 363-374.
|
|
[27]
|
Zhang, L. and Li, J. (2019) Improvement of Human-Machine Compatibility of Upper-Limb Rehabilitation Exoskeleton Using Passive Joints. Robotics & Autonomous Systems, 112, 22-31. [Google Scholar] [CrossRef]
|
|
[28]
|
柴静. 手部康复机器人用户定制设计[D]: [硕士学位论文]. 秦皇岛: 燕山大学, 2019.
|
|
[29]
|
Spaeth, A., Tebyani, M., Haussler, D. and Teodorescu, M. (2020) Spiking Neural State Machine for Gait Frequency Entrainment in a Flexible Modular Robot. PLOS ONE, 15, e0240267. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
石文韬, 孟青云, 喻洪流, 郭帅. 一种模块化的腕关节康复训练器设计与仿真[J]. 软件导刊, 2021, 20(2): 135-141.
|
|
[31]
|
李伟达, 王柱, 张虹淼, 李娟, 顾洪. 床式步态康复训练系统机构设计[J]. 浙江大学学报: 工学版, 2021, 55(5): 823-830
|
|
[32]
|
刘开元. 链式可重构模块化机器人设计及重构策略研究[D]: [硕士学位论文]. 上海: 上海交通大学, 2019.
|
|
[33]
|
刘策越, 刘建功, 刘扬, 等. 模块化机器人的模块形态特性[J]. 吉林大学学报(工学版), 2019, 49(1): 199-208. [Google Scholar] [CrossRef]
|
|
[34]
|
赵思恺, 李长乐, 张宗伟, 等. 模块化可重构外肢体机器人[J]. 哈尔滨理工大学报, 2021, 42(4): 218.
|
|
[35]
|
陈刚, 东辉. 自重构仿生四足机器人运动学分析及仿真[J]. 机械制造与自动化, 2021, 50(2): 95.
|