|
[1]
|
Liu, Y., Zhang, Q., Yang, L., et al. (2022) Metformin Attenuates Cardiac Hypertrophy via the HIF-1α/PPAR-γ Signaling Pathway in High-Fat Diet Rats. Frontiers in Pharmacology, 13, Article ID: 919202. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Nakamura, M. and Sadoshima, J. (2018) Mechanisms of Physio-logical and Pathological Cardiac Hypertrophy. Nature Reviews Cardiology, 15, 387-407. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Tsao, C.W., Aday, A.W., Almarzooq, Z.I., et al. (2022) Heart Disease and Stroke Statistics-2022 Update: A Report from the American Heart Association. Circulation, 145, e153-e639. [Google Scholar] [CrossRef]
|
|
[4]
|
Kim, G.H., Uriel, N. and Burkhoff, D. (2018) Reverse Re-modelling and Myocardial Recovery in Heart Failure. Nature Reviews Cardiology, 15, 83-96. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Whitcomb, J., Gharibeh, L. and Nemer, M. (2019) From Embryo-genesis to Adulthood: Critical Role for GATA Factors in Heart Development and Function. IUBMB Life, 72, 53-67. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Lentjes, M.H., Niessen, H., Akiyama, Y., et al. (2016) The Emerging Role of GATA Transcription Factors in Development and Disease. Expert Reviews in Molecular Medicine, 18, e3. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Floriani, M.A., Glaeser, A.B., Dorfman, L.E., et al. (2021) GATA 4 Dele-tions Associated with Congenital Heart Diseases in South Brazil. Journal of Pediatric Genetics, 10, 92-97. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Tong, Y.-F. (2016) Mutations of NKX2.5 and GATA4 Genes in the Development of Congenital Heart Disease. Gene, 588, 86-94. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Katanasaka, Y., Suzuki, H., Sunagawa, Y., et al. (2016) Regulation of Cardiac Transcription Factor GATA4 by Post-Translational Modification in Cardiomyocyte Hypertrophy and Heart Failure. International Heart Journal, 57, 672-675. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Valimaki, M.J. and Ruskoaho, H.J. (2020) Targeting GATA4 for Cardiac Repair. IUBMB Life, 72, 68-79. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Zhou, P., He, A. and Pu, W.T. (2012) Regulation of GATA4 Transcriptional Activity in Cardiovascular Development and Disease. Current Topics in Developmental Biology, 100, 143-169. [Google Scholar] [CrossRef]
|
|
[12]
|
Takaya, T., Kawamura, T., Morimoto, T., et al. (2008) Identification of p300-Targeted Acetylated Residues in GATA4 during Hypertrophic Responses in Cardiac Myocytes. Journal of Biological Chemistry, 283, 9828-9835. [Google Scholar] [CrossRef]
|
|
[13]
|
You, W., Song, L. and Wang, K. (2018) Acetylation of GATA4 on Lysine Residue K313 Promotes Osteoblastic Cells Growth. Cellular Physiology and Biochemistry, 46, 269-278. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Zhou, W., Jiang, D., Tian, J., et al. (2018) Acetylation of H3K4, H3K9, and H3K27 Mediated by p300 Regulates the Expression of GATA4 in Cardiocytes. Genes and Diseases, 6, 318-325. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Yamamura, S., Izumiya, Y., Araki, S., et al. (2020) Cardiomyo-cyte Sirt (Sirtuin) 7 Ameliorates Stress-Induced Cardiac Hypertrophy by Interacting with and Deacetylating GATA4. Hypertension, 75, 98-108. [Google Scholar] [CrossRef]
|
|
[16]
|
Rose, B.A., Force, T. and Wang, Y. (2010) Mi-togen-Activated Protein Kinase Signaling in the Heart: Angels versus Demons in a Heart-Breaking Tale. Physiological Reviews, 90, 1507-1546. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Liang, Q., Wiese, R.J., Bueno, O.F., et al. (2001) The Transcription Factor GATA4 Is Activated by Extracellular Signal-Regulated Kinase 1- and 2-Mediated Phosphorylation of Serine 105 in Cardiomyocytes. Molecular and Cellular Biology, 21, 7460-7469. [Google Scholar] [CrossRef]
|
|
[18]
|
Berlo, J., Elrod, J.W., Aronow, B.J., et al. (2011) Serine 105 Phosphorylation of Transcription Factor GATA4 Is Necessary for Stress-Induced Cardiac Hypertrophy in Vivo. Proceedings of the National Academy of Sciences of the United States of America, 108, 12331-12336. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Acosta, A.J., Rysa, J., Szabo, Z., et al. (2020) Phosphorylation of GATA4 at Serine 105 Is Required for Left Ventricular Remodelling Process in Angiotensin II-Induced Hypertension in Rats. Basic & Clinical Pharmacology & Toxicology, 127, 178-195. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Valimaki, M.J., Tolli, M.A., Kinnunen, S.M., et al. (2017) Discovery of Small Molecules Targeting the Synergy of Cardiac Transcription Factors GATA4 and NKX2-5. Journal of Medicinal Chemistry, 60, 7781-7798. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Kinnunen, S.M., Tolli, M., Valimaki, M.J., et al. (2018) Car-diac Actions of a Small Molecule Inhibitor Targeting GATA4-NKX2-5 Interaction. Scientific Reports, 8, Article No. 4611. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Karhu, S.T., Kinnunen, S.M., Tlli, M., et al. (2020) GATA4-Targeted Compound Exhibits Cardioprotective Actions against Doxorubicin-Induced Toxicity in Vitro and in Vivo: Establishment of a Chronic Cardiotoxicity Model Using Human iPSC-Derived Cardiomyocytes. Archives of Toxi-cology, 94, 2113-2130. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Vlimki, M.J., Leigh, R.S., Kinnunen, S., et al. (2021) GATA-Targeted Compounds Modulate Cardiac Subtype Cell Differentiation in Dual Reporter Stem Cell Line. Stem Cell Research & Therapy, 12, 190. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Han, P., Hang, C.T., Yang, J., et al. (2011) Chromatin Remod-eling in Cardiovascular Development and Physiology. Circulation Research, 108, 378-396. [Google Scholar] [CrossRef]
|
|
[25]
|
Mehta, G., Kumarasamy, S., Wu, J., et al. (2015) MITF Interacts with the SWI/SNF Subunit, BRG1, to Promote GATA4 Expression in Cardiac Hypertrophy. Journal of Molec-ular and Cellular Cardiology, 88, 101-110. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Van Berlo, J.H. (2015) Chromatin Remodeling Permits Cardiac Hypertrophy to Develop. Journal of Molecular and Cellular Cardiology, 89, 119-121. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Hota, S.K., Johnson, J.R., Verschueren, E., et al. (2019) Dynamic BAF Chromatin Remodeling Complex Subunit Inclusion Promotes Temporally Distinct Gene Expression Programs in Cardiogenesis. Development, 146, dev174086. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Sun, X., Hota, S.K., Zhou, Y.Q., et al. (2018) Cardiac-Enriched BAF Chromatin-Remodeling Complex Subunit Baf60c Regulates Gene Expression Programs Essential for Heart Development and Function. Biology Open, 7, bio.029512. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Iyer, L.M., Nagarajan, S., Woelfer, M., et al. (2018) A Context-Specific Cardiac Beta-Catenin and GATA4 Interaction Influences TCF7L2 Occupancy and Remodels Chromatin Driving Disease Progression in the Adult Heart. Nucleic Acids Research, 46, 2850-2867. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Shimizu, S., Sunagawa, Y., Hajika, N., et al. (2022) Multimerization of the GATA4 Transcription Factor Regulates Transcriptional Activity and Cardiomyocyte Hypertrophic Response. Interna-tional Journal of Biological Sciences, 18, 1079-1095. [Google Scholar] [CrossRef] [PubMed]
|