|
[1]
|
Döhner, H., Weisdorf, D.J. and Bloomfield, C.D. (2015) Acute Myeloid Leukemia. The New England Journal of Medi-cine, 373, 1136-1152. [Google Scholar] [CrossRef]
|
|
[2]
|
Short, N.J. and Ravandi, F. (2016) Acute Myeloid Leukemia: Past, Present, and Prospects for the Future. Clinical Lymphoma, Myeloma and Leukemia, 16, S25-S29. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Döhner, H., Estey, E.H., Amadori, S., et al. (2010) Di-agnosis and Management of Acute Myeloid Leukemia in Adults: Recommendations from an International Expert Panel, on Behalf of the European LeukemiaNet. Blood, 115, 453-474. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Warburg, O. (1956) On the Origin of Cancer Cells. Science, 123, 309-314. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Warburg, O. (1928) The Chemical Constitution of Respiration Ferment. Science, 68, 437-443. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Lunt, S.Y. and Vander Heiden, M.G. (2011) Aerobic Glycolysis: Meeting the Metabolic Requirements of Cell Proliferation. Annual Review of Cell and Developmental Biology, 27, 441-464. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Peppicelli, S., Bianchini, F. and Calorini, L. (2014) Extracellular Acidity, a “Reappreciated” Trait of Tumor Environment Driving Malignancy: Perspectives in Diagnosis and Therapy. Cancer and Metastasis Reviews, 33, 823-832. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Fan, C., Tang, Y., Wang, J., et al. (2017) Role of Long Non-Coding RNAs in Glucose Metabolism in Cancer. Molecular Cancer, 16, Article No. 130. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
杨一言, 高继萍, 续国强, 等. 非编码RNA调控口腔鳞状细胞癌葡萄糖代谢重编程的研究进展[J]. 中国比较医学杂志, 2022, 32(3): 91-97.
|
|
[10]
|
Mathupala, S.P., Ko, Y.H. and Pedersen, P.L. (2006) Hexokinase II: Cancer’s Double-Edged Sword Acting as Both Facilitator and Gatekeeper of Ma-lignancy When Bound to Mitochondria. Oncogene, 25, 4777-4786. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Ju, H.Q., Zhan, G., Huang, A., et al. (2017) ITD Mutation in FLT3 Tyrosine Kinase Promotes Warburg Effect and Renders Therapeutic Sensitivity to Glycolytic Inhibition. Leukemia, 31, 2143-2150. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Ma, P., Xing, M., Han, L., et al. (2020) High PD-L1 Expression Drives Glycolysis via an Akt/mTOR/HIF-1α Axis in Acute Myeloid Leukemia. Oncology Reports, 43, 999-1009. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Sánchez-Martínez, C. and Aragón, J.J. (1997) Analysis of Phos-phofructokinase Subunits and Isozymes in Ascites Tumor Cells and Its Original Tissue, Murine Mammary Gland. FEBS Letters, 409, 86-90. [Google Scholar] [CrossRef]
|
|
[14]
|
Luo, X., Zheng, D., Zheng, R., et al. (2018) The Platelet Isoform of Phosphofructokinase in Acute Myeloid Leukemia: Clinical Relevance and Prognostic Implication. Blood, 132, 5251. [Google Scholar] [CrossRef]
|
|
[15]
|
Qing, Y., Dong, L., Gao, L., et al. (2021) R-2-Hydroxyglutarate Attenuates Aerobic Glycolysis in Leukemia by Targeting the FTO/m6A/PFKP/LDHB Axis. Mo-lecular Cell, 81, 922-939.e9. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Yang, G.J., Wu, J., Leung, C.H., et al. (2021) A Review on the Emerging Roles of Pyruvate Kinase m2 in Anti-Leukemia Therapy. International Journal of Biological Macromolecules, 193, 1499-1506. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Huang, Y., Chen, L.M., Xie, J.Y., et al. (2021) High Expres-sion of PKM2 Was Associated with the Poor Prognosis of Acute Leukemia. Cancer Management and Research, 13, 7851-7858. [Google Scholar] [CrossRef]
|
|
[18]
|
Wu, H., Zhao, H. and Chen, L. (2020) Deoxyshikonin Inhibits Viability and Glycolysis by Suppressing the Akt/mTOR Pathway in Acute Myeloid Leukemia Cells. Frontiers in Oncology, 10, Article No. 1253. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Augoff, K. and Grabowski, K. (2004) Przydatność oznaczania dehy-drogenazy mleczanowej w rozpoznawaniu chorób nowotworowych [Significance of Lactate Dehydrogenase Measure-ments in Diagnosis of Malignancies]. Polski Merkuriusz Lekarski, 17, 644-647.
|
|
[20]
|
Kolev, Y., Uetake, H., Takagi, Y., et al. (2008) Lactate Dehydrogenase-5 (LDH-5) Expression in Human Gastric Cancer: Association with Hypox-ia-Inducible Factor (HIF-1alpha) Pathway, Angiogenic Factors Production and Poor Prognosis. Annals of Surgical On-cology, 15, 2336-2344. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Porporato, P.E., Dhup, S., Dadhich, R.K., et al. (2011) Anticancer Targets in the Glycolytic Metabolism of Tumors: A Comprehensive Review. Frontiers in Phar-macology, 2, Article No. 49. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Qi, H.X., Cao, Q., Zhou, G.P., et al. (2019) MicroRNA 34b Inhibits Cell Proliferation in Pediatric Acute Myeloid Leukemia via Regulating LDHA. European Review for Medical and Pharmacological Sciences, 23, 5351-5359.
|
|
[23]
|
程薇, 杨丽萍, 周建奖, 等. 过表达CagA对胃癌细胞中GLUT1表达的影响[J]. 贵州医科大学学报, 2021, 46(4): 381-386. [Google Scholar] [CrossRef]
|
|
[24]
|
Pragallapati, S. and Manyam, R. (2019) Glucose Transporter 1 in Health and Disease. Journal of Oral and Maxillofacial Pathology, 23, 443-449. [Google Scholar] [CrossRef]
|
|
[25]
|
Adams, B.D., Parsons, C., Walker, L., Zhang, W.C. and Slack, F.J. (2017) Targeting Noncoding RNAs in Disease. Journal of Clinical Investigation, 127, 761-771. [Google Scholar] [CrossRef]
|
|
[26]
|
Wang, Y., Zou, Y., Zhang, Q., et al. (2022) LncRNA SBF2-AS1 Facilitates Nonsmall Cell Lung Cancer Progression by Targeting miR-520a-3p. Journal of Healthcare Engineering, 2022, Article ID: 2223149. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Zhang, Q., Liu, X.J., Li, Y., et al. (2021) Prognostic Value of Im-mune-Related lncRNA SBF2-AS1 in Diffuse Lower-Grade Glioma. Technology in Cancer Research & Treatment, 20. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Tian, Y.J., Wang, Y.H., Xiao, A.J., et al. (2019) Long Noncod-ing RNA SBF2-AS1 Act as a ceRNA to Modulate Cell Proliferation via Binding with miR-188-5p in Acute Myeloid Leukemia. Artificial Cells, Nanomedicine, and Biotechnology, 47, 1730-1737. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Huang, H.H., Chen, F.Y., Chou, W.C., et al. (2019) Long Non-Coding RNA HOXB-AS3 Promotes Myeloid Cell Proliferation and Its Higher Expression Is an Adverse Prognos-tic Marker in Patients with Acute Myeloid Leukemia and Myelodysplastic Syndrome. BMC Cancer, 19, Article No. 617. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Chen, L., Hu, N., Wang, C., et al. (2020) HOTAIRM1 Knock-down Enhances Cytarabine-Induced Cytotoxicity by Suppression of Glycolysis through the Wnt/β-catenin/PFKP Path-way in Acute Myeloid Leukemia Cells. Archives of Biochemistry and Biophysics, 680, Article ID: 108244. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Wang, X., Zhang, L., Zhao, F., et al. (2018) Long Non-Coding RNA Taurine-Upregulated Gene 1 Correlates with Poor Prognosis, Induces Cell Proliferation, and Represses Cell Apoptosis via Targeting Aurora Kinase A in Adult Acute Myeloid Leukemia. Annals of Hematology, 97, 1375-1389. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Zhang, W., Liu, Y., Zhang, J., et al. (2020) Long Non-Coding RNA Taurine Upregulated Gene 1 Targets miR-185 to Regulate Cell Proliferation and Glycolysis in Acute Myeloid Leu-kemia Cells in Vitro. OncoTargets and Therapy, 13, 7887-7896. [Google Scholar] [CrossRef]
|
|
[33]
|
Sun, L.Y., Li, X.J., Sun, Y.M., et al. (2018) LncRNA ANRIL Regulates AML Development through Modulating the Glucose Metabolism Pathway of AdipoR1/AMPK/SIRT1. Molecular Cancer, 17, 127. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Zhai, H., Zhao, J., Pu, J., et al. (2021) LncRNA-DUXAP8 Regu-lation of the Wnt/β-Catenin Signaling Pathway to Inhibit Glycolysis and Induced Apoptosis in Acute Myeloid Leukemia. Turkish Journal of Hematology, 38, 264-272. [Google Scholar] [CrossRef] [PubMed]
|