|
[1]
|
Han, X., Lu, L., Zheng, Y., et al. (2019) A Review on the Key Issues of the Lithium Ion Battery Degradation among the Whole Life Cycle. eTransportation, 1, Article ID: 100005. [Google Scholar] [CrossRef]
|
|
[2]
|
Goodenough, J.B. and Kim, Y. (2009) Challenges for Rechargea-ble Li Batteries. Chemistry of Materials, 22, 587-603. [Google Scholar] [CrossRef]
|
|
[3]
|
Cha, E., Patel, M.D., Park, J., et al. (2018) 2D MoS2 as an Efficient Pro-tective Layer for Lithium Metal Anodes in High-Performance Li-S Batteries. Nature Nanotechnology, 13, 337-344. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Sun, L., Borodin, O., Gao, T., et al. (2015) “Water-in-Salt” Elec-trolyte Enables High-Voltage Aqueous Lithium-Ion Chemistries. Science, 350, 938-943. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Liu, K., Liu, W., Qiu, Y., et al. (2017) Electrospun Core-Shell Micro-fiber Separator with Thermal-Triggered Flame-Retardant Properties for Lithium-Ion Batteries. Science Advances, 3, 1-9. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Chen, S., Zheng, J., Yu, L., et al. (2018) High-Efficiency Lithium Metal Batteries Withfire-Retardant Electrolytes. Joule, 2, 1548-1558. [Google Scholar] [CrossRef]
|
|
[7]
|
Cheng, X.B., Zhang, R., Zhao, C.Z., et al. (2017) Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. Chemical Reviews, 117, 10403-10473. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Lopez, J., Mackanic, D.G., Cui, Y., et al. (2019) Designing Polymers for Advanced Battery Chemistries. Nature Reviews Materials, 4, 312-330. [Google Scholar] [CrossRef]
|
|
[9]
|
Manthiram, A., Yu, X. and Wang, S. (2017) Lithium Battery Chemistries Enabled by Solid-State Electrolytes. Nature Reviews Materials, 2, Article No. 16103. [Google Scholar] [CrossRef]
|
|
[10]
|
Bachman, J.C., Muy, S., Grimaud, A., et al. (2016) Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction. Chemical Reviews, 116, 140-162. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Fan, L., Wei, S., Li, S., et al. (2018) Recent Progress of the Solid-State Electrolytes for High-Energy Metal-Based Batteries. Advanced Energy Materials, 8, Article ID: 1702657. [Google Scholar] [CrossRef]
|
|
[12]
|
Aurbach, D., Talyosef, Y., Markovsky, B., et al. (2004) Design of Electrolyte Solutions for Li and Li-Ion Batteries: A Review. Electrochimica Acta, 50, 247-254. [Google Scholar] [CrossRef]
|
|
[13]
|
Allen, J.L., Wolfenstine, J., Rangasamy, E., et al. (2012) Effect of Substitution (Ta, Al, Ga) on the Conductivity of Li7La3Zr2O12. Journal of Power Sources, 206, 315-319. [Google Scholar] [CrossRef]
|
|
[14]
|
Kamaya, N., Homma, K., Yamakawa, Y., et al. (2011) A Lithium Superionic Conductor. Nature Materials, 10, 682-686. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Geiger, C.A., Alekseev, E., Lazic, B., et al. (2011) Crystal Chemistry and Stability of “Li7La3Zr2O12” Garnet: A Fast Lithium-Ion Conductor. Inorg Chem, 50, 1089-1097. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Yoshiyuki, I., Chen, L., Misuru, I., et al. (1993) High Ionic Conductivity in Lithium Lanthanum Titanate. Solid State Communications, 86, 689-693. [Google Scholar] [CrossRef]
|
|
[17]
|
Chung, H. and Kang, B. (2017) Mechanical and Thermal Failure Induced by Contact between a Li1.5Al0.5Ge1.5(PO4)3 Solid Electrolyte and Li Metal in an All Solid-State Li Cell. Chemistry of Materials, 29, 8611-8619. [Google Scholar] [CrossRef]
|
|
[18]
|
Santhosha, A.L., Medenbach, L., Buchheim, J.R., et al. (2019) The Indium-Lithium Electrode in Solid-State Lithium-Ion Batteries: Phase Formation, Redox Potentials, and Interface Stability. Batteries & Supercaps, 2, 524-529. [Google Scholar] [CrossRef]
|
|
[19]
|
Bron, P., Johansson, S., Zick, K., et al. (2013) Li10SnP2S12: An Af-fordable Lithium Superionic Conductor. Journal of the American Chemical Society, 135, 15694-15697. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Matsuo, M., Nakamori, Y., Orimo, S.-I., et al. (2007) Lithium Superionic Conduction in Lithium Borohydride Accompanied by Structural Transition. Applied Physics Letters, 91, Article ID: 224103. [Google Scholar] [CrossRef]
|
|
[21]
|
Liu, Y., Lee, J.Y. and Hong, L. (2004) In Situ Preparation of Poly(Ethylene Oxide)-SiO2 Composite Polymer Electrolytes. Journal of Power Sources, 129, 303-311. [Google Scholar] [CrossRef]
|
|
[22]
|
Chio, N. and Park, J. (2001) New Polymer Electrolytes Based on PVC/PMMA Blend for Plastic Lithium-Ion Batteries. Electrochim. Acta, 46, 1453-1459. [Google Scholar] [CrossRef]
|
|
[23]
|
Chen-Yang, Y., Chen, H., Lin, F., et al. (2002) Polyacrylo-nitrile Electrolytes1. A Novel High-Conductivity Composite Polymer Electrolyte Based on Pan, LiClO4 and A-Al2O3. Solid State Ionics, 150, 327-335. [Google Scholar] [CrossRef]
|
|
[24]
|
Zhang, X., Wang, S., Xue, C., et al. (2019) Self-Suppression of Lithium Dendrite in All-Solid-State Lithium Metal Batteries with Poly(vinylidene difluoride)-Based Solid Electrolytes. Advanced Materials, 31, e1806082. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Monrpe, C. and Newman, J. (2005) The Impact of Elastic Defor-mation on Deposition Kinetics at Lithiumõpolymer Interfaces. Journal of the Electrochemical Society, 152, A396-A404. [Google Scholar] [CrossRef]
|
|
[26]
|
Monroe, C. and Newman, J. (2004) The Effect of Interfacial Deformation on Electrodeposition Kinetics. Journal of the Electrochemical Society, 151, A880-A886. [Google Scholar] [CrossRef]
|
|
[27]
|
Porz, L., Swamy, T., Sheldon, B.W., et al. (2017) Mechanism of Lithium Metal Penetration through Inorganic Solid Electrolytes. Advanced Energy Materials, 7, Article ID: 1701003. [Google Scholar] [CrossRef]
|
|
[28]
|
Han, F., Westover, A.S., Yue, J., et al. (2019) High Electronic Con-ductivity as the Origin of Lithium Dendrite Formation within Solid Electrolytes. Nature Energy, 4, 187-196. [Google Scholar] [CrossRef]
|
|
[29]
|
Mo, F., Ruan, J., Sun, S., et al. (2019) Inside or Outside: Origin of Lithium Dendrite Formation of All Solid-State Electrolytes. Advanced Energy Materials, 9, Article ID: 1902123. [Google Scholar] [CrossRef]
|
|
[30]
|
Zhang, H., Li, C., Piszcz, M., et al. (2017) Single Lithium-Ion Con-ducting Solid Polymer Electrolytes: Advances and Perspectives. Chemical Society Reviews, 46, 797-815. [Google Scholar] [CrossRef]
|
|
[31]
|
Bannister, D., Davies, G. and Ward, I. (1984) Ionic Conductivities for Poly(ethylene oxide) Complexes with Lithium Salts of Monobasic and Dibasic Acids and Blends of Poly(ethylene oxide) with Lithium Salts of Anionic Polymers. Polymer, 25, 1291-1296. [Google Scholar] [CrossRef]
|
|
[32]
|
Sun, X.B. and Kerr, J. (2006) Synthesis and Characterization of Network Single Ion Conductors Based on Comb-Branched Polyepoxide Ethers and Lithium Bis(Allylmalonato)Borate. Macromolecules, 39, 362-372. [Google Scholar] [CrossRef]
|
|
[33]
|
Li, Y., Wong, K.W. and Ng, K.M. (2016) Ionic Liquid Decorated Meso-porous Silica Nanoparticles: A New High- Performance Hybrid Electrolyte for Lithium Batteries. Chemical Communica-tions, 52, 4369-4372. [Google Scholar] [CrossRef]
|
|
[34]
|
Hu, J., Wang, W., Zhou, B., et al. (2019) Poly(Ethylene Oxide)-Based Composite Polymer Electrolytes Embedding with Ionic Bond Modified Nanoparticles for All-Solid-State Lithium-Ion Battery. Journal of Membrane Science, 575, 200-208. [Google Scholar] [CrossRef]
|
|
[35]
|
Sun, Y., Zhan, X., Hu, J., et al. (2019) Improving Ionic Conductivity with Bimodal-Sized Li7La3Zr2O12 Fillers for Composite Polymer Electrolytes. ACS Applied Materials & Interfaces, 11, 12467-12475. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Fu, K.K., Gong, Y., Dai, J., et al. (2016) Flexible, Solid-State, Ion-Conducting Membrane with 3d Garnet Nanofiber Networks for Lithium Batteries. Proceedings of the National Academy of Sciences of the United States of America, 113, 7094-7099. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Wan, J., Xie, J., Kong, X., et al. (2019) Ultrathin, Flexible, Solid Polymer Composite Electrolyte Enabled with Aligned Nanoporous Host for Lithium Batteries. Nature Nanotechnology, 14, 705-711. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Zeng, X.X., Yin, Y.X., Li, N.W., et al. (2016) Reshaping Lithium Plating/Stripping Behavior via Bifunctional Polymer Electrolyte for Room-Temperature Solid Li Metal Batteries. Journal of the American Chemical Society, 138, 15825-15828. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Toomas, K., Sloop, S.B., Kerr, J., et al. (2000) Comparison of Lithi-um-Polymer Cell Performance with Unity and Nonunity Transference Numbers. J. Powersources, 89, 132-138. [Google Scholar] [CrossRef]
|
|
[40]
|
Doyle, M. and Newman, J. (1995) The Use of Mathematical Modeling in the Design of Lithium/Polymer Battery Systems. Electrochimica Acta, 40, 2191-2196. [Google Scholar] [CrossRef]
|
|
[41]
|
Brissot, C., Rosso, M., Chazalviel, J., et al. (1999) Dendritic Growth Mechanisms in Lithiumrpolymer Cells. Journal of Power Sources, 81-82, 925-929. [Google Scholar] [CrossRef]
|
|
[42]
|
Zhang, H., Oteo, U., Judez, X., et al. (2019) Designer Anion Enabling Solid-State Lithium-Sulfur Batteries. Joule, 3, 1689-1702. [Google Scholar] [CrossRef]
|
|
[43]
|
Porcarelli, L., Shaplov, A.S., Bella, F., et al. (2016) Single-Ion Conducting Polymer Electrolytes for Lithium Metal Polymer Batteries That Operate at Ambient Temperature. ACS Energy Letters, 1, 678-682. [Google Scholar] [CrossRef]
|
|
[44]
|
Yuan, H., Luan, J., Yang, Z., et al. (2020) Single Lithium-Ion Conducting Solid Polymer Electrolyte with Superior Electrochemical Stability and Interfacial Compatibility for Solid-State Lithium Metal Batteries. ACS Applied Materials & Interfaces, 12, 7249-7256. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Cao, C., Li, Y., Feng, Y., et al. (2019) A Solid-State Single-Ion Pol-ymer Electrolyte with Ultrahigh Ionic Conductivity for Dendrite-Free Lithium Metal Batteries. Energy Storage Materials, 19, 401-407. [Google Scholar] [CrossRef]
|
|
[46]
|
Ma, Q., Xia, Y., Feng, W., et al. (2016) Impact of the Functional Group in the Polyanion of Single Lithium-Ion Conducting Polymer Electrolytes on the Stability of Lithium Metal Elec-trodes. RSC Advances, 6, 32454-32461. [Google Scholar] [CrossRef]
|
|
[47]
|
Ma, Q., Zhang, H., Zhou, C., et al. (2016) Single Lithium-Ion Con-ducting Polymer Electrolytes Based on a Super-Delocalized Polyanion. Angewandte Chemie International Edition, 55, 2521-2525. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Fei, Y., Liu, S., Long, Y., et al. (2019) New Single Lithium Ion Con-ducting Polymer Electrolyte Derived from Delocalized Tetrazolate Bonding to Polyurethane. Electrochimica Acta, 299, 902-913. [Google Scholar] [CrossRef]
|
|
[49]
|
Luo, G., Yuan, B., Guan, T., et al. (2019) Synthesis of Single Lithium-Ion Conducting Polymer Electrolyte Membrane for Solid-State Lithium Metal Batteries. ACS Applied Energy Materials, 2, 3028-3034. [Google Scholar] [CrossRef]
|
|
[50]
|
Guzman-Gonzalez, G., Avila-Paredes, H.J., Rivera, E., et al. (2018) Electrochemical Characterization of Single Lithium-Ion Conducting Polymer Electrolytes Based on sp3 Boron and Poly(ethylene glycol) Bridges. ACS Applied Materials & Interfaces, 10, 30247-30256. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Deng, K., Wang, S., Ren, S., et al. (2017) Network Type SP3 Bo-ron-Based Single-Ion Conducting Polymer Electrolytes for Lithium Ion Batteries. Journal of Power Sources, 360, 98-105. [Google Scholar] [CrossRef]
|
|
[52]
|
Shao, Z. and Jannasch, P. (2017) Single Lithium-Ion Con-ducting Poly(Tetrafluorostyrene Sulfonate)-Polyether Block Copolymer Electrolytes. Polymer Chemistry, 8, 785-94. [Google Scholar] [CrossRef]
|
|
[53]
|
Liu K-L, Chao C-H, Lee H-C, et al. (2019) A Novel Non-Porous Sep-arator Based on Single-Ion Conducting Triblock Copolymer for Stable Lithium Electrodeposition. Journal of Power Sources, 419, 58-64. [Google Scholar] [CrossRef]
|
|
[54]
|
Deng, K., Qin, J., Wang, S., et al. (2018) Effective Suppres-sion of Lithium Dendrite Growth Using a Flexible Single-Ion Conducting Polymer Electrolyte. Small, 14, e1801420. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Deng, K., Wang, S., Ren, S., et al. (2016) A Novel Sin-gle-Ion-Conducting Polymer Electrolyte Derived from CO2-Based Multifunctional Polycarbonate. ACS Applied Materials & Interfaces, 8, 33642-33648. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Liu, F., Xiao, Q., Wu, H.B., et al. (2018) Fabrication of Hybrid Sili-cate Coatings by a Simple Vapor Deposition Method for Lithium Metal Anodes. Advanced Energy Materials, 8, Article ID: 1701744. [Google Scholar] [CrossRef]
|
|
[57]
|
Yang, T., Sun, Y., Qian, T., et al. (2020) Lithium Dendrite Inhibition via 3D Porous Lithium Metal Anode Accompanied by Inherent Sei Layer. Energy Storage Materials, 26, 385-390. [Google Scholar] [CrossRef]
|
|
[58]
|
Cheng X-B, Zhao C-Z, Yao Y-X, et al. (2019) Recent Advances in Energy Chemistry between Solid-State Electrolyte and Safe Lithium-Metal Anodes. Chem, 5, 74-96. [Google Scholar] [CrossRef]
|
|
[59]
|
Shen, Y., Zhang, Y., Han, S., et al. (2018) Unlocking the Ener-gy Capabilities of Lithium Metal Electrode with Solid-State Electrolytes. Joule, 2, 1674-1689. [Google Scholar] [CrossRef]
|
|
[60]
|
Oh, D.Y., Nam, Y.J., Park, K.H., et al. (2015) Excellent Compati-bility of Solvate Ionic Liquids with Sulfide Solid Electrolytes: Toward Favorable Ionic Contacts in Bulk-Type All-Solid-State Lithium-Ion Batteries. Advanced Energy Materials, 5, Article ID: 1500865. [Google Scholar] [CrossRef]
|
|
[61]
|
Zheng, B., Zhu, J., Wang, H., et al. (2018) Stabilizing Li10SnP2S12/Li Interface via an in Situ Formed Solid Electrolyte Interphase Layer. ACS Applied Materials & Interfaces, 10, 25473-25482. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Umeshbabu, E., Zheng, B., Zhu, J., et al. (2019) Stable Cycling Lith-ium-Sulfur Solid Battery with Enhanced Li/ Li10GeP2S12 Solid Electrolyte Interface Stability. ACS Applied Materials & Interfaces, 11, 18436-18447. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Takada, K. (2013) Progress and Prospective of Solid-State Lithium Batteries. Acta Materialia, 61, 759-770. [Google Scholar] [CrossRef]
|
|
[64]
|
Wan, H., Peng, G., Yao, X., et al. (2016) Cu2ZnSnS4/Graphene Nanocomposites for Ultrafast, Long Life All-Solid-State Lithium Batteries Using Lithium Metal Anode. Energy Storage Materials, 4, 59-65. [Google Scholar] [CrossRef]
|
|
[65]
|
Chi, S.-S., Liu, Y., Zhao, N., et al. (2019) Solid Polymer Electro-lyte Soft Interface Layer with 3D Lithium Anode for All-Solid-State Lithium Batteries. Energy Storage Materials, 17, 309-316. [Google Scholar] [CrossRef]
|
|
[66]
|
Nagao, M., Hayashi, A. and Tatsumisago, M. (2012) Bulk-Type Lithium Metal Secondary Battery with Indium Thin Layer at Interface between Li Electrode and Li2S-P2S5 Solid Electrolyte. Electrochemistry, 80, 734-736. [Google Scholar] [CrossRef]
|
|
[67]
|
Han, F., Yue, J., Fan, X., et al. (2016) High-Performance All-Solid-State Lithium-Sulfur Battery Enabled by a Mixed-Conductive Li2S Nanocomposite. Nano Letters, 16, 4521-4527. [Google Scholar] [CrossRef] [PubMed]
|
|
[68]
|
Fu, K.K., Gong, Y., Fu, Z., et al. (2017) Transient Behavior of the Metal Interface in Lithium Metal-Garnet Batteries. Angewandte Chemie International Edition, 56, 14942-14947. [Google Scholar] [CrossRef] [PubMed]
|
|
[69]
|
Wang, C., Gong, Y., Liu, B., et al. (2017) Conformal, Nanoscale ZnO Surface Modification of Garnet-Based Solid-State Electrolyte for Lithium Metal Anodes. Nano Letters, 17, 565-571. [Google Scholar] [CrossRef] [PubMed]
|
|
[70]
|
Lu, Y., Huang, X., Ruan, Y., et al. (2018) An in Situ Element Permeation Constructed High Endurance Li-Llzo Interface at High Current Densities. Journal of Materials Chemistry A, 6, 18853-18858. [Google Scholar] [CrossRef]
|
|
[71]
|
Duan, J., Wu, W., Nolan, A.M., et al. (2019) Lithium-Graphite Paste: An Interface Compatible Anode for Solid-State Batteries. Advanced Materials, 31, e1807243. [Google Scholar] [CrossRef] [PubMed]
|
|
[72]
|
Shao, Y., Wang, H., Gong, Z., et al. (2018) Drawing a Soft Interface: An Effective Interfacial Modification Strategy for Garnet-Type Solid-State Li Batteries. ACS Energy Letters, 3, 1212-1218. [Google Scholar] [CrossRef]
|
|
[73]
|
Xia, Q., Sun, S., Xu, J., et al. (2018) Self-Standing 3D Cath-odes for All-Solid-State Thin Film Lithium Batteries with Improved Interface Kinetics. Small, 14, Article ID: e1804149. [Google Scholar] [CrossRef] [PubMed]
|
|
[74]
|
Sun, S., Xia, Q., Liu, J., et al. (2019) Self-Standing Oxygen-Deficient α-Moo3-X Nanoflake Arrays as 3D Cathode for Advanced All-Solid-State Thin Film Lithium Batteries. Journal of Mate-riomics, 5, 229-236. [Google Scholar] [CrossRef]
|
|
[75]
|
Zhao, Q., Liu, X., Stalin, S., et al. (2019) Solid-State Polymer Electrolytes with In-Built Fast Interfacial Transport for Secondary Lithium Batteries. Nature Energy, 4, 365-373. [Google Scholar] [CrossRef]
|
|
[76]
|
Inoue, T. and Mukai, K. (2016) Are All-Solid-State Lithium-Ion Batteries Really Safe? Verification by Differential Scanning Calorimetry with an All-Inclusive Microcell. ACS Applied Materials & Interfaces, 9, 1507-1515. [Google Scholar] [CrossRef] [PubMed]
|
|
[77]
|
Janek, J. and Zeier, W.G. (2016) A Solid Future for Battery Devel-opment. Nature Energy, 1, Article No. 16141. [Google Scholar] [CrossRef]
|
|
[78]
|
Muramatsu, H., Hayashi, A., Ohtomo, T., et al. (2011) Structural Change of Li2S-P2S5 Sulfide Solid Electrolytes in the Atmosphere. Solid State Ionics, 182, 116-119. [Google Scholar] [CrossRef]
|
|
[79]
|
Ohtomo, T., Hayashi, A., Tatsumisago, M., et al. (2013) Character-istics of the Li2O-Li2S-P2S5 Glasses Synthesized by the Two-Step Mechanical Milling. Journal of Non-Crystalline Solids, 364, 57-61. [Google Scholar] [CrossRef]
|
|
[80]
|
Hayashi, A., Muramatsu, H., Ohtomo, T., et al. (2014) Im-proved Chemical Stability and Cyclability in Li2S-P2S5-P2O5-ZnO Composite Electrolytes for All-Solid-State Rechargea-ble Lithium Batteries. Journal of Alloys and Compounds, 591, 247-250. [Google Scholar] [CrossRef]
|
|
[81]
|
Hayashi, A., Muramatsu, H., Ohtomo, T., et al. (2013) Im-provement of Chemical Stability of Li3PS4 Glass Electrolytes by Adding MxOy (M = Fe, Zn, and Bi) Nanoparticles. Journal of Materials Chemistry A, 1, 6320-6326. [Google Scholar] [CrossRef]
|
|
[82]
|
Song, S., Wu, Y., Tang, W., et al. (2019) Composite Solid Polymer Elec-trolyte with Garnet Nanosheets in Poly (Ethylene Oxide). ACS Sustainable Chemistry & Engineering, 7, 7163-7170. [Google Scholar] [CrossRef]
|
|
[83]
|
Li, X., Wang, D., Wang, H., et al. (2019) Poly(Ethylene Ox-ide)-Li10snp2s12 Composite Polymer Electrolyte Enables High-Performance All-Solid-State Lithium Sulfur Battery. ACS Applied Materials & Interfaces, 11, 22745-22753. [Google Scholar] [CrossRef] [PubMed]
|
|
[84]
|
Zhang, N., He, J., Han, W., et al. (2019) Composite Solid Electrolyte PEO/Sn/Lialo2 for a Solid-State Lithium Battery. Journal of Materials Science, 54, 9603-9612. [Google Scholar] [CrossRef]
|
|
[85]
|
Zhang, J., Zheng, C., Lou, J., et al. (2019) Poly(Ethylene Oxide) Reinforced Li6PS5Cl Composite Solid Electrolyte for All-Solid-State Lithium Battery: Enhanced Electrochemical Perfor-mance, Mechanical Property and Interfacial Stability. Journal of Power Sources, 412, 78-85. [Google Scholar] [CrossRef]
|
|
[86]
|
Liu, X., Zhang, C., Gao, S., et al. (2020) A Novel Polyphos-phonate Flame-Retardant Additive towards Safety-Reinforced All-Solid-State Polymer Electrolyte. Materials Chemistry and Physics, 239, Article ID: 122014. [Google Scholar] [CrossRef]
|
|
[87]
|
Shibutani, R, and Tsutsumi, H. (2012) Fire-Retardant Solid Polymer Electrolyte Films Prepared from Oxetane Derivative with Dimethyl Phosphate Ester Group. Journal of Power Sources, 202, 369-373. [Google Scholar] [CrossRef]
|
|
[88]
|
Zhou, X., Jiang, H., Zheng, H., et al. (2020) Nonflammable Hybrid Solid Electrolyte Membrane for a Solid-State Lithium Battery Compatible with Conventional Porous Electrodes. Journal of Membrane Science, 603, Article ID: 117820. [Google Scholar] [CrossRef]
|
|
[89]
|
Liu, Q., Liu, Y., Jiao, X., et al. (2019) Enhanced Ionic Conduc-tivity and Interface Stability of Hybrid Solid-State Polymer Electrolyte for Rechargeable Lithium Metal Batteries. Energy Storage Materials, 23, 105-111. [Google Scholar] [CrossRef]
|
|
[90]
|
Liu, J., Shen, X., Zhou, J., et al. (2019) Nonflammable and High-Voltage-Tolerated Polymer Electrolyte Achieving High Stability and Safety in 4.9 V-Class Lithium Metal Battery. ACS Applied Materials & Interfaces, 11, 45048-45056. [Google Scholar] [CrossRef] [PubMed]
|
|
[91]
|
Kelly, J.C., Pepin, M., Huber, D.L., et al. (2012) Reversible Control of Electrochemical Properties Using Thermally-Responsive Polymer Electrolytes. Advanced Materials, 24, 886-889. [Google Scholar] [CrossRef] [PubMed]
|
|
[92]
|
Yang, H., Liu, Z., Chandran, B.K., et al. (2015) Self-Protection of Electrochemical Storage Devices via a Thermal Reversible Sol-Gel Transition. Advanced Materials, 27, 5593-5598. [Google Scholar] [CrossRef] [PubMed]
|
|
[93]
|
Shi, Y., Ha, H., Al-Sudani, A., et al. (2016) Thermoplastic Elasto-mer-Enabled Smart Electrolyte for Thermoresponsive Self-Protection of Electrochemical Energy Storage Devices. Ad-vanced Materials, 28, 7921-7928. [Google Scholar] [CrossRef] [PubMed]
|
|
[94]
|
Zhou, J., Qian, T., Liu, J., et al. (2019) High-Safety All-Solid-State Lithium-Metal Battery with High-Ionic-Conductivity Thermoresponsive Solid Polymer Electrolyte. Nano Letters, 19, 3066-3073. [Google Scholar] [CrossRef] [PubMed]
|
|
[95]
|
Shen, X., Li, Y., Qian, T., et al. (2019) Lithium Anode Stable in Air for Low-Cost Fabrication of a Dendrite-Free Lithium Battery. Nature Communications, 10, Article No. 900. [Google Scholar] [CrossRef] [PubMed]
|