|
[1]
|
Guo, H.B. and Guo, H. (2007) Mechanism of Histone Methylation Catalyzed by Protein Lysine Methyltransferase SET7/9 and Origin of Product Specificity. Proceedings of the National Academy of Sciences of the United States of America, 104, 8797-8802. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Chin, H.G., Esteve, P.O., Ruse, C., et al. (2020) The Microtubule-Associated Histone Methyltransferase SET8, Facilitated by Transcription Factor LSF, Methyl-ates Alpha-Tubulin. Journal of Biological Chemistry, 295, 4748-4759. [Google Scholar] [CrossRef]
|
|
[3]
|
Xiao, B., Jing, C., Kelly, G., et al. (2005) Specificity and Mecha-nism of the Histone Methyltransferase Pr-Set7. Genes & Development, 19, 1444-1454. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Centore, R.C., Havens, C.G., Manning, A.L., et al. (2010) CRL4(Cdt2)-Mediated Destruction of the Histone Methyltransferase Set8 Prevents Premature Chromatin Compaction in S Phase. Molecular Cell, 40, 22-33. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Luo, M. (2018) Chemical and Biochemical Perspectives of Pro-tein Lysine Methylation. Chemical Reviews, 118, 6656-6705. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Girish, T.S., Mcginty, R.K. and Tan, S. (2016) Multivalent In-teractions by the Set8 Histone Methyltransferase with Its Nucleosome Substrate. Journal of Molecular Biology, 428, 1531-1543. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Oda, H., Okamoto, I., Murphy, N., et al. (2009) Monomethylation of Histone H4-lysine 20 Is Involved in Chromosome Structure and Stability and Is Essential for Mouse Development. Molecular and Cellular Biology, 29, 2278-2295. [Google Scholar] [CrossRef]
|
|
[8]
|
Hayashi, A., Giakoumakis, N.N., Heidebrecht, T., et al. (2018) Direct Binding of Cdt2 to PCNA Is Important for Targeting the CRL4(Cdt2) E3 Ligase Activity to Cdt1. Life Science Alliance, 1, e201800238. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Zheng, N., Dai, X., Wang, Z., et al. (2016) A New Layer of Degrada-tion Mechanism for PR-Set7/Set8 during Cell Cycle. Cell Cycle, 15, 3042-3047. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Li, Y., Armstrong, R.L., Duronio, R.J., et al. (2016) Meth-ylation of Histone H4 Lysine 20 by PR-Set7 Ensures the Integrity of Late Replicating Sequence Domains in Drosophila. Nucleic Acids Research, 44, 7204-7218. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Kalakonda, N., Fischle, W., Boccuni, P., et al. (2008) Histone H4 Lysine 20 Monomethylation Promotes Transcriptional Repression by L3MBTL1. Oncogene, 27, 4293-4304. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Yao, L., Li, Y., Du, F., Han, X., et al. (2014) Histone H4 Lys 20 Me-thyltransferase SET8 Promotes Androgen Receptor-Mediated Transcription Activation in Prostate Cancer. Biochemical and Biophysical Research Communications, 450, 692-696. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Jorgensen, S., Schotta, G. and Sorensen, C.S. (2013) Histone H4 Lysine 20 Methylation: Key Player in Epigenetic Regulation of Genomic Integrity. Nucleic Acids Research, 41, 2797-2806. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Tanaka, H., Takebayashi, S.I., Sakamoto, A., et al. (2017) The SETD8/PR-Set7 Methyltransferase Functions as a Barrier to Prevent Senescence-Associated Metabolic Remodeling. Cell Reports, 18, 2148-2161. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
West, L.E., Roy, S., Lachmi-Weiner, K., et al. (2010) The MBT Repeats of L3MBTL1 Link SET8-Mediated p53 Methylation at Lysine 382 to Target Gene Repression. Journal of Bio-logical Chemistry, 285, 37725-37732. [Google Scholar] [CrossRef]
|
|
[16]
|
Colaluca, I.N., Basile, A., Freiburger, L., et al. (2018) A Numb-Mdm2 Fuzzy Complex Reveals an Isoform-Specific Involvement of Numb in Breast Cancer. Journal of Cell Bi-ology, 217, 745-762. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Zhang, X., Peng, Y., Yuan, Y., et al. (2020) Histone Methyltransferase SET8 Is Regulated by miR-192/215 and Induces Oncogene-Induced Senescence via p53-Dependent DNA Damage in Human Gastric Carcinoma Cells. Cell Death & Disease, 11, Article No. 937. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Cardano, M., Tribioli, C. and Prosperi, E. (2020) Targeting Pro-liferating Cell Nuclear Antigen (PCNA) as an Effective Strategy to Inhibit Tumor Cell Proliferation. Current Cancer Drug Targets, 20, 240-252. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Takawa, M., Cho, H.S., Hayami, S., et al. (2012) Histone Lysine Methyltransferase SETD8 Promotes Carcinogenesis by Deregulating PCNA Expression. Cancer Re-search, 72, 3217-3227. [Google Scholar] [CrossRef]
|
|
[20]
|
Li, Z., Nie, F., Wang, S. and Li, L. (2011) Histone H4 Lys 20 Monomethylation by Histone Methylase SET8 Mediates Wnt Target Gene Activation. Proceedings of the National Academy of Sciences of the United States of America, 108, 3116-3123. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Yang, F., Sun, L., Li, Q., et al. (2012) SET8 Promotes Epitheli-al-Mesenchymal Transition and Confers TWIST Dual Transcriptional Activities. EMBO Journal, 31, 110-123. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Hou, L., Li, Q., Yu, Y., et al. (2016) SET8 Induces Epithelialmesen-chymal Transition and Enhances Prostate Cancer Cell Metastasis by Cooperating with ZEB1. Molecular Medicine Re-ports, 13, 1681-1688. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Liu, B., Zhang, X., Song, F., et al. (2016) MiR-502/SET8 Regulatory Circuit in Pathobiology of Breast Cancer. Cancer Letters, 376, 259-267. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Huang, R., Yu, Y., Zong, X., et al. (2017) Monomethyltransfer-ase SETD8 Regulates Breast Cancer Metabolism via Stabilizing Hypoxia-Inducible Factor 1alpha. Cancer Letters, 390, 1-10. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Vu, T. and Datta, P.K. (2017) Regulation of EMT in Colo-rectal Cancer: A Culprit in Metastasis. Cancers (Basel), 9, 171-193. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Liu, M., Shi, Y., Hu, Q., et al. (2021) SETD8 Induces Stemness and Epithelial-Mesenchymal Transition of Pancreatic Cancer Cells by Regulating ROR1 Expression. Acta Biochimica et Bio-physica Sinica (Shanghai), 53, 1614-1624. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Shi, X.L., Guo, Z.J., Wang, X.L., et al. (2015) SET8 Expression Is Associated with Overall Survival in Gastric Cancer. Genetics and Molecular Research, 14, 15609-15615. [Google Scholar] [CrossRef]
|
|
[28]
|
Piao, L., Che, N., Li, H., et al. (2020) SETD8 Promotes Stem-ness Characteristics and Is a Potential Prognostic Biomarker of Gastric Adenocarcinoma. Experimental and Molecular Pathology, 117, Article ID: 104560. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Wu, J., Qiao, K., Du, Y., et al. (2020) Downregulation of His-tone Methyltransferase SET8 Inhibits Progression of Hepatocellular Carcinoma. Scientific Reports, 10, Article No. 4490. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Qi, J., Chen, X., Wu, Q., et al. (2020) Fasting Induces Hepato-cellular Carcinoma Cell Apoptosis by Inhibiting SET8 Expression. Oxidative Medicine and Cellular Longevity, 2020, Ar-ticle ID: 3985089. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Wada, M., Kukita, A., Sone, K., et al. (2020) Epigenetic Modifier SETD8 as a Therapeutic Target for High-Grade Serous Ovarian Cancer. Biomolecules, 10, Article No. 1686. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Zhang, S., Guo, Z., Xu, J., et al. (2017) miR-502-Mediated Histone Methyltransferase SET8 Expression Is Associated with Clear Cell Renal Cell Carcinoma Risk. Oncology Letters, 14, 7131-7138. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Ma, Z. (2018) Downregulation of SETD8 by miR-382 Is Involved in Glioma Progression. Pathology Research and Practice, 214, 356-360. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Li, X., Liu, Z., Xia, C., et al. (2022) SETD8 Stabilized by USP17 Epigenetically Activates SREBP1 Pathway to Drive Lipogenesis and Oncogenesis of ccRCC. Cancer Letters, 527, 150-163. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Milite, C., Feoli, A., Viviano, M., et al. (2016) Progress in the Development of Lysine Methyltransferase SETD8 Inhibitors. ChemMedChem, 11, 1680-1685. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Valente, S., Lepore, I., Dell’aversana, C., et al. (2012) Identification of PR-SET7 and EZH2 Selective Inhibitors Inducing Cell Death in Human Leukemia U937 Cells. Biochimie, 94, 2308-2313. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Ma, A., Yu, W., Xiong, Y., et al. (2014) Structure-Activity Rela-tionship Studies of SETD8 Inhibitors. MedChemComm, 5, 1892-1898. [Google Scholar] [CrossRef]
|
|
[38]
|
Ma, A., Yu, W., Li, F., et al. (2014) Discovery of a Selective, Sub-strate-Competitive Inhibitor of the Lysine Methyltransferase SETD8. Journal of Medicinal Chemistry, 57, 6822-6833. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Veschi, V., Liu, Z., Voss, T.C., et al. (2017) Epigenetic siRNA and Chemical Screens Identify SETD8 Inhibition as a Therapeutic Strategy for p53 Activation in High-Risk Neuroblastoma. Cancer Cell, 31, 50-63. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Blum, G., Ibanez, G., Rao, X., et al. (2014) Small-Molecule Inhib-itors of SETD8 with Cellular Activity. ACS Chemical Biology, 9, 2471-2478. [Google Scholar] [CrossRef] [PubMed]
|