分数次极大算子及其交换算子在Lie群作用下的广义Orlicz-Morrey空间上的估计
Fractional Maximal Operator and Its Commutator on Generalized Orlicz-Morrey Spaces over Lie Groups
DOI: 10.12677/PM.2022.129157, PDF, HTML,    科研立项经费支持
作者: 芮俪, 逯光辉*, 李雪梅:西北师范大学数学与统计学院,甘肃 兰州
关键词: 分数次极大算子交换子广义Orlicz-Morrey空间BMO(G)空间Lie群Fractional Maximal Operator Commutator Generalized Orlicz-Morrey Space Space BMO(G) Lie Group
摘要: 本文首先给出分层李群G作用下的广义Orlicz-Morrey空间MΦ,φ(G)的定义,其次利用HO¨lder不等式以及函数分界方法,得到了分数次极大算子Mα在此空间上的有界性估计,最后证明了分数次极大算子Mα与BMO及其与BMO函数生成的交换子Mb,α从MΦ,φ(G)到Mψ,η(G)上的有界性。
Abstract: This article first gives the definition of generalized Orlicz-Morrey MΦ,φ(G) on stratified Lie group G; second proves that the fractional maximal operator Mα is bounded from spaces MΦ,φ(G) into spaces Mψ,η(G) by means of HO¨lder inequality and the method of function decomposition. Furthermore, the boundedness of the commutator Mb,α generated by b∈BMO(G) from spaces MΦ,φ(G) into spaces Mψ,η(G) is also obtained.
文章引用:芮俪, 逯光辉, 李雪梅. 分数次极大算子及其交换算子在Lie群作用下的广义Orlicz-Morrey空间上的估计[J]. 理论数学, 2022, 12(9): 1441-1456. https://doi.org/10.12677/PM.2022.129157

参考文献

[1] Birnbaum, Z. and Orlicz, W. (1931) Uber die verallgemeinerung des begriffes der zueinander konjugierten potenzen. Studia Mathematica, 3, 1-67.[CrossRef
[2] Orlicz, W. (1932) Uber eine gewisse Klasse von Raumen vom Typus B. Bull. Int. Acad. Pol. Ser. A, 8, 207-220. (Reprinted in: Collected Papers, PWN, Warszawa, 1988, 217-230)
[3] Aberqi, A., Bennouna, J. and Elmassoudi, M. (2021) Nonlinear Elliptic Equations with Measure Data in Orlicz Spaces. Ukrains'kyi Matematychnyi Zhurnal, 73, 1587-1611.[CrossRef
[4] Bourahma, M., Benkirane, A. and Bennouna, J. (2021) Existence of Renormalized Solutions for a Class of Nonlinear Parabolic Equations with Generalized Growth in Orlicz Spaces. Khayyam Journal of Mathematics, 7, 140-164.
[5] Mohamed, M.M.A. (2021) Nonlinear Quadratic Volterra-Urysohn Functional-Integral Equations in Orlicz Spaces. Filomat, 35, 2963-2972.[CrossRef
[6] Bourahma, M., Benkirane, A. and Bennouna, J. (2020) Existence of Renormalized Solutions for Some Nonlinear Elliptic Equations in Orlicz Spaces. Rendiconti del Circolo Matematico di Palermo, 69, 231-252.[CrossRef
[7] Zhang, C., Li, C. and Meng, F. (2022) Global Attractors in Orlicz Spaces for Reaction-Diffusion Equations. Applied Mathematics Letters, 123, Article ID: 107294.[CrossRef
[8] Kawasumi, R. and Nakai, E. (2020) Pointwise Multipliers on Weak Orlicz Spaces. Hiroshima Mathematical Journal, 50, 169-184. [Google Scholar] [CrossRef
[9] Asadzadeh, J.A. and Jabrailova, A.N. (2021) On Stability of Bases From Perturbed Exponential Systems in Orlicz Spaces. Azerbaijan Journal of Mathematics, 11, 196-213.
[10] Chamorro, D. (2022) Mixed Sobolev-Like Inequalities in Lebesgue Spaces of Variable Exponents and in Orlicz Spaces. Positivity, 26, 5-21.[CrossRef
[11] Rao, M.M. and Ren, Z. (2002) Applications of Orlicz Spaces. Marcel Dekker Inc., New York.
[12] Tran, M. and Nguyen, T. (2022) Weighted Distribution Approach to Gradient Estimates for Quasilinear Elliptic Double-Obstacle Problems in Orlicz Spaces. Journal of Mathematical Analysis and Applications, 509, Article ID: 125928.[CrossRef
[13] Nakai, E. (2004) Generalized Fractional Integrals on Orlicz-Morrey Spaces. Banach and Function Spaces. Yokohama Publ., Yokohama, 323-333.
[14] Takeshi, I. (2021) Orlicz-Fractional Maximal Operators in Morrey and Orlicz-Morrey Spaces. Positivity, 25, 243-272. [Google Scholar] [CrossRef
[15] Yamaguchi, S. and Nakai, E. (2022) Compactness of Commutators of Integral Operators with Functions in Campanato Spaces on Orlicz-Morrey Spaces. Journal of Fourier Analysis and Applications, 28, Article No. 33.[CrossRef
[16] Sawano, Y., Sugano, S. and Tanaka, H. (2012) Orlicz-Morrey Spaces and Fractional Operators. Potential Analysis, 36, 517-556. [Google Scholar] [CrossRef
[17] Hasanov, J.J. (2014) Φ-Admissible Sublinear Singular Operators and Generalized Orlicz- Morrey Spaces. Journal of Function Spaces, 2014, Article ID: 505237.[CrossRef
[18] Deringoz, F., Guliyev, V.S. and Hasanov, S.G. (2018) Commutators of Fractional Maximal Operator on Generalized Orlicz-Morrey Spaces. Positivity, 22, 141-158.[CrossRef
[19] Eroglu, A., Abasova, G.A. and Guliyev, V.S. (2019) Characterization of Parabolic Fractional Integral and Its Commutators in Parabolic Generalized Orlicz-Morrey Spaces. Azerbaijan Journal of Mathematics, 9, 92-107.
[20] Nakai, E. (2014) Generalized Fractional Integrals on Generalized Morrey Spaces. Mathematische Nachrichten, 287, 339-351. [Google Scholar] [CrossRef
[21] Deringoz, F., Guliyev, V.S. and Samko, S.G. (2014) Boundedness of Maximal and Singular Operators on Generalized Orlicz-Morrey Spaces. In: Bastos, M., Lebre, A., Samko, S. and Spitkovsky, I., Eds., Operator Theory, Operator Algebras and Applications, Birkhauser, Basel, 139-158. 7 [Google Scholar] [CrossRef
[22] Gogatishvili, A., Genebashvili, I. and Kokilashvili, V. (1998)Weight Theory for Integral Transforms on Spaces of Homogeneous Type. Longman, Harlow.
[23] Lu, G. (2021) Parameter Marcinkiewicz Integral and Its Commutator on Generalized Orlicz-Morrey Spaces. Journal of the Korean Mathematical Society, 58, 383-400.
[24] Omarova, M.N. (2020) Nonsingular Integral Operator and Its Commutators on Vanishing Generalized Orlicz-Morrey Spaces. Azerbaijan Journal of Mathematics, 10, 140-156.
[25] Guliyev, V. (2022) Some Characterizations of BMO Spaces via Commutators in Orlicz Spaces on Stratified Lie Groups. Results in Mathematics, 77, Article No. 42.[CrossRef
[26] Jiang, M. and Li, F. (2022) Lie Group Continual Meta Learning Algorithm. Applied Intelligence, 52, 10965-10978.
[27] Moustafa, M., Amin, A. and Laouini, G. (2021) New Exact Solutions for the Nonlinear Schrdinger's Equation with Anti-Cubic Nonlinearity Term via Lie Group Method. Optik, 248, 168-205.[CrossRef
[28] Stein, E. (1993) Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals. Princeton University Press, Princeton.
[29] Capone, C., Cruz-Uribe, D. and Fiorenza, A. (2007) The Fractional Maximal Operator and Fractional Integrals on Variable Lp Spaces. Revista Matematica Iberoamericana, 23, 743-770.[CrossRef
[30] Cao, M. and Xue, Q. (2016) Characterization of Two-Weighted Inequalities for Multilinear Fractional Maximal Operator. Nonlinear Analysis, 130, 214-228.[CrossRef
[31] Hu, G., Lin, H. and Yang, D. (2007) Marcinkiewicz Integrals with Non-Doubling Measures. Integral Equations and Operator Theory, 52, 205-238. [Google Scholar] [CrossRef
[32] Guliyev, V. and Deringoz, F. (2015) Boundedness of Fractional Maximal Operator and Its Commutators on Generalized Orlicz-Morrey Spaces. Complex Analysis and Operator Theory, 9, 1249-1267.[CrossRef
[33] Ri, C. and Zhang, Z. (2019) Boundedness of Commutator of θ-Type Calderon-Zygmund Operators on Non-Homogeneous Metric Measure Spaces. Chinese Annals of Mathematics, Series B, 40, 585-598.[CrossRef
[34] Lu, G. (2020) Commutators of θ-Type Generalized Fractional Integrals on Non-Homogeneous Spaces. Journal of Inequalities and Applications, 2020, Article No. 202.[CrossRef
[35] Lu, G. and Tao, S. (2021) Generalized Homogeneous Littlewood-Paley g-Function on Some Function Spaces. Bulletin of the Malaysian Mathematical Sciences Society, 44, 17-34.[CrossRef
[36] Lu, G. and Zhou, J. (2015) Boundedness of Commutators of Parameter Marcinkiewicz Integrals on Morrey Spaces with Non-Doubling Measures. Advances in Mathematics, 44, 73-83.
[37] Deringoz, F., Dorak, K. and Guliyev, V. (2012) Characterization of the Boundedness of Fractional Maximal Operator and Its Commutators in Orlicz and Generalized Orlicz-Morrey Spaces on Spaces of Homogeneous Type. Analysis and Mathematical Physics, 11, Article No. 63.[CrossRef
[38] Li, H. (1972) On Certain Convolution Inequalities. Proceedings of the American Mathematical Society, 36, 505-510. [Google Scholar] [CrossRef
[39] Janson, S. (1978) Mean Oscillation and Commutators of Singular Integral Operators. Arkiv for Matematik, 16, 263-270. [Google Scholar] [CrossRef
[40] Guliyev, V. (2021) Commutators of Fractional Maximal Function in Generalized Morrey Spaces on Carnot Groups. Complex Variables and Elliptic Equations, 66, 893-909.[CrossRef