|
[1]
|
Siegel, R.L., Miller, K.D., Fuchs, H. and Jemal, A. (2021) Cancer Statistics. CA: A Cancer Journal for Clinicians, 71, 7-33. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
牛佳慧. 青海地区甲状腺乳头状癌患者术前血小板参数与临床病理特征相关性研究[D]: [硕士学位论文]. 青海: 青海大学, 2020.
|
|
[3]
|
沈婉莹. 中国甲状腺癌流行趋势及女性患病危险因素分析[D]: [硕士学位论文]. 衡阳: 南华大学, 2021.
|
|
[4]
|
中华人民共和国卫生健康委员会. 甲状腺癌诊疗规范(2018年版) [S]. 中华普通外科学文献: 电子版, 2019, 13(1): 1-15.
|
|
[5]
|
Davies, L. and Hoang, J.K. (2021) Thyroid Cancer in the USA: Current Trends and Outstanding Questions. The Lancet Diabetes & Endocrinology, 9, 11-12. [Google Scholar] [CrossRef]
|
|
[6]
|
马静, 崔立刚, 王淑敏. 甲状腺乳头状癌侵袭性亚型病理分子生物学特征的研究进展[J]. 中华医学超声杂志(电子版), 2021, 18(4): 412-415.
|
|
[7]
|
黄建新, 陈薇, 郑建华, 苏仙练, 方明宇, 曾宸, 陈振东. 超声引导下细针穿刺结合BRAFV600E检测在诊断甲状腺癌的价值[J]. 医学影像学杂志, 2021, 31(1): 126-129.
|
|
[8]
|
Chen, H., Song, A., Wang, Y., He, Y., Tong, J., Di, J., et al. (2021) BRAFV600E Mutation Test on Fine-Needle Aspiration Specimens of Thyroid Nodules: Clinical Correlations for 4600 Pa-tients. Cancer Medicine, 11, 40-49. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Chen, P., Pan, L., Huang, W., Feng, H., Ouyang, W., Wu, J., et al. (2020) BRAFV600E and Lymph Node Metastases in Papillary Thyroid Cancer. Endocrine Connections, 9, 999-1008. [Google Scholar] [CrossRef]
|
|
[10]
|
张婷婷, 渠宁, 史荣亮, 嵇庆海. BRAFV600E突变对甲状腺乳头状癌发生及预后的影响[J]. 中国癌症杂志, 2017, 27(2): 145-150.
|
|
[11]
|
朱国权, 欧阳伟. BRAFV600E突变与甲状腺乳头状癌的研究进展[J]. 分子影像学杂志, 2019, 42(1): 70-76.
|
|
[12]
|
Mauri, G., Bonazzina, E., Amatu, A., Tosi, F., Ben-cardino, K., Gori, V., et al. (2021) The Evolutionary Landscape of Treatment for BRAFV600E Mutant Metastatic Colorectal Cancer. Cancers, 13, Article No. 137. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Mercer, K.E. and Pritchard, C.A. (2003) Raf Proteins and Cancer: B-Raf Is Identified as a Mutational Target. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, 1653, 25-40. [Google Scholar] [CrossRef]
|
|
[14]
|
罗定远, 廖健伟. 甲状腺癌基因检测与临床应用广东专家共识(2020版) [J]. 中华普通外科学文献(电子版), 2020, 14(3): 161-168.
|
|
[15]
|
陈君君, 郑洪. BRAF基因V600E突变在恶性肿瘤中作用的研究进展[J]. 山东医药, 2019, 59(26): 91-94.
|
|
[16]
|
Yang, Y., Wang, D., Cui, L., Ma, H.H., Zhang, L., Lian, H.Y., et al. (2021) Effectiveness and Safety of Dabrafenib in the Treatment of 20 Chinese Children with BRAFV600E-Mutated Langerhans Cell Histiocytosis. Cancer Research and Treatment, 53, 261-269. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
金凤, 陈复辉. BRAF基因在非小细胞肺癌靶向治疗中的前景[J]. 临床肺科杂志, 2019, 24(7): 1319-1321.
|
|
[18]
|
Oh, H.S., Kwon, H., Park, S., Kim, M., Jeon, M.J., Kim, T.Y., et al. (2018) Comparison of Immunohistochemistry and Direct Sanger Sequencing for Detection of the BRAF(V600E) Mutation in Thyroid Neoplasm. Endocrinology and Metabolism, 33, 62-69. [Google Scholar] [CrossRef]
|
|
[19]
|
Kim, J.-K., Seong, C.Y., Bae, I.E., Yi, J.W., Yu, H.W., Kim, S.J., et al. (2018) Comparison of Immunohistochemistry and Direct Sequencing Methods for Identification of the BRAFV600E Mutation in Papillary Thyroid Carcinoma. Annals of Surgical Oncology, 25, 1775-1781. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
苏宝胜. 基于二代测序检测的甲状腺癌患者基因突变的研究[D]: [硕士学位论文]. 合肥: 安徽医科大学, 2021.
|
|
[21]
|
时运, 王卓. ddPCR技术和Sanger测序法检测甲状腺乳头状癌患者BRAFV600E基因突变的比较分析[J]. 中国肿瘤外科杂志, 2021, 13(3):287-290.
|
|
[22]
|
Cabanillas, M.E., Ryder, M. and Jimenez, C. (2019) Targeted Therapy for Advanced Thyroid Cancer: Kinase Inhibitors and Beyond. En-docrine Reviews, 40, 1573-1604. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Zhou, D., Li, Z. and Bai, X.F. (2018) BRAFV600E and RET/PTC Promote the Activity of Nuclear Factor-κB, Inflammatory Mediators, and Lymph Node Metas-tasis in Papillary Thyroid Carcinoma: A Study of 50 Patients in Inner Mongolia. Medical Science Monitor, 24, 6795-6808. [Google Scholar] [CrossRef]
|
|
[24]
|
Qu, H.-J., Qu, X.-Y., Hu, Z., Lin, Y., Wang, J.R., Zheng, C.F., et al. (2018) The Synergic Effect of BRAFV600E Mutation and Multifocality on Central Lymph Node Metastasis in Unilateral Papillary Thyroid Carcinoma. Endocrine Journal, 65, 113-120. [Google Scholar] [CrossRef]
|
|
[25]
|
Howell, G.M., Nikiforova, M.N., Carty, S.E., Armstrong, M.J., Hodak, S.P., Stang, M.T., et al. (2013) BRAFV600E Mutation Independently Predicts Central Compartment Lymph Node Metastasis in Patients with Papillary Thyroid Cancer. Annals of Surgical Oncology, 20, 47-52. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
吴文年, 白超, 杨镇玮, 罗军. BRAFV600E基因与甲状腺乳头状癌的相关性研究[J]. 新疆医学, 2021, 51(8): 877-881.
|
|
[27]
|
Li, G.-Y., Tan, H.-L., Hu, H.Y., Liu, M., Ou-Yang, D.J., et al. (2020) Predictive Factors for Level V Lymph Node Metastases in Papillary Thyroid Carcinoma with BRAFV600E Mutation and Clinicopathological Features. Cancer Management and Research, 12, 3371-3378. [Google Scholar] [CrossRef]
|
|
[28]
|
Zhang, J., Yang, Y., Zhao, J., Shi, L., Xu, Y., Yu, K., et al. (2019) Investigation of BRAF Mutation in a Series of Papillary Thyroid Carcinoma and Matched-Lymph Node Metastasis with ARMS PCR. Pathology: Research and Practice, 215, 761-765. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Ren, H.Y., Shen, Y.F., Hu, D., He, W., Zhou, J., Cao, Y., et al. (2018) Co-Existence of BRAFV600E and TERT Promoter Mu-tations in Papillary Thyroid Carcinoma Is Associated with Tumor Aggressiveness, but Not with Lymph Node Metastasis. Cancer Management and Research, 10, 1005-1013. [Google Scholar] [CrossRef]
|
|
[30]
|
Lan, X.B., Bao, H., Ge, X., Cao, J., Fan, X., Zhang, Q., et al. (2020) Genomic Landscape of Metastatic Papillary Thyroid Carcinoma and Novel Biomarkers for Predicting Distant Metastasis. Cancer Science, 111, 2163-2173. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Tang, A.L., Kloos, R.T., Aunins, B., Holm, T.M., Roth, M.Y., Yeh, M.W., et al. (2021) Pathologic Features Associated With Molecular Subtypes of Well-Differentiated Thyroid Cancer. Endocrine Practice, 27, 206-211. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Bae, J.S., Kim, Y.H., Jeon, S., Kim, S.H., Kim, T.J., Lee, S., et al. (2016) Clinical Utility of TERT Promoter Mutations and ALK Rearrangement in Thyroid Cancer Patients with a High Prevalence of the BRAFV600E Mutation. Diagnostic Pathology, 11, 21. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Vuong, H.G., Altibi, A.M., Duong, U.N., Ngo, H.T., Pham, T.Q., Tran, H.M., et al. (2017) Role of Molecular Markers to Predict Distant Metastasis in Papillary Thyroid Carcinoma: Promising Value of TERT Promoter Mutations and Insignificant Role of BRAF Mutations—A Meta-Analysis. Tumor Biology, 39, Article ID: 1010428317713913. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
鲁涛, 高洁, 周良锐, 陆俊良, 林岩松, 吴焕文. 甲状腺癌RAS/BRAF/TERT基因突变与临床病理特征的关系[J]. 诊断病理学杂志, 2020, 27(4): 250-254.
|
|
[35]
|
Tsumagari, K., Abd Elmageed, Z.Y., Sholl, A.B., Green, E.A., Sobti, S., Khan, A.R., et al. (2018) Bortezomib Sensitizes Thyroid Can-cer to BRAF Inhibitor in Vitro and in Vivo. Endocrine-Related Cancer, 25, 99-109. [Google Scholar] [CrossRef]
|
|
[36]
|
Lu, H.-Z., Qiu, T., Ying, J.-M. and Lyn, N. (2017) Association between BRAFV600E Mutation and the Clinicopathological Features of Solitary Papillary Thyroid Microcarcinoma. Oncology Let-ters, 13, 1595-1600. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
赫捷, 李进, 程颖, 樊嘉, 郭军, 江泽飞, 梁军, 马军, 秦叔逵, 王洁, 吴一龙, 徐瑞华, 于金明. 中国临床肿瘤学会(CSCO)分化型甲状腺癌诊疗指南2021 [J]. 肿瘤预防与治疗, 2021, 34(12): 1164-1201.
|
|
[38]
|
Haugen, B.R., Alexander, E.K., Bible, K.C., Doherty, G.M., Mandel, S.J., Nikiforov, Y.E., et al. (2016) 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Dif-ferentiated Thyroid Cancer. Thyroid, 26, 1-133. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Xing, M.Z. (2010) Prognostic Utility of BRAF Mutation in Papillary Thyroid Cancer. Molecular and Cellular Endocrinology, 321, 86-93. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Liu, S.Y., Liu, C.G., Zhao, L., Wang, K., Li, S., Tian, Y., Jiao, B., et al. (2021) A Prediction Model Incorporating the BRAFV600E Protein Status for Determining the Risk of Cervical Lateral Lymph Node Metastasis in Papillary Thyroid Cancer Patients with Central Lymph Node Metastasis. European Journal of Surgical Oncology, 47, 2774-2780. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Yan, C.J., Huang, M.L., Li, X., Wang, T. and Ling, R. (2019) Re-lationship between BRAFV600E and Clinical Features in Papillary Thyroid Carcinoma. Endocrine Connections, 8, 988-996. [Google Scholar] [CrossRef]
|
|
[42]
|
Deng, C., Li, S., Yang, Z.X., Dou, Y., Hu, D.X., Zhu, J., Wang, D.H. and Su, X.L. (2021) Multi-Gene Assay and Clinical Characteristics Research in Papillary Thyroid Carcinoma. Gland Surgery, 10, 242-251. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Zheng, X.Q., Peng, C., Gao, M., Zhi, J., Hou, X., Zhao, J., et al. (2019) Risk Factors for Cervical Lymph Node Metastasis in Papillary Thyroid Microcarcinoma: A Study of 1,587 Patients. Cancer Biology & Medicine, 16, 121-130. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
张茂杰, 赵代伟, 叶晖. 甲状腺乳头状癌BRAF基因突变检测及临床价值[J]. 中国细胞生物学学报. 2020, 42(6): 1040-1047.
|
|
[45]
|
Ravera, S., Reyna-Neyra, A., Fer-randino, G., Amzel, L.M. and Carrasco N. (2017) The Sodium/Iodide Symporter (NIS): Molecular Physiology and Pre-clinical and Clinical Applications. Annual Review of Physiology, 79, 261-289. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Michael Tuttle, R., Ahuja, S., Avram, A.M., Bernet, V.J., Bourguet, P., Daniels, G.H., et al. (2019) Controversies, Consensus, and Collaboration in the Use of 131 I Therapy in Differentiated Thyroid Cancer: A Joint Statement from the American Thyroid Association, the European Association of Nuclear Medicine, the Society of Nuclear Medicine and Molecular Imaging, and the European Thyroid Association. Thyroid, 29, 461-470. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Liu, J.R., Liu, Y.Q., Lin, Y.S. and Liang, J. (2019) Radioactive Io-dine-Refractory Differentiated Thyroid Cancer and Redifferentiation Therapy. Endocrinology and Metabolism, 34, 215-225. [Google Scholar] [CrossRef]
|
|
[48]
|
Naoum, G.E., Morkos, M., Kim, B. and Arafat, W. (2018) Novel Targeted Therapies and Immunotherapy for Advanced Thyroid Cancers. Molecular Cancer, 17, Article No. 51. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Haddad, R.I., Nasr, C., Bischoff, L., Busaidy, N.L., Byrd, D., Callender, G., et al. (2018) NCCN Guidelines Insights: Thyroid Carcinoma, Version 2.2018. Journal of the National Comprehensive Cancer Network, 16, 1429-1440. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Cabanillas, M.E. and McFadden, D.G. (2016) Cosimo Durante. Thyroid Cancer. Lancet, 388, 2783-2795. [Google Scholar] [CrossRef]
|
|
[51]
|
Valerio, L., Pieruzzi, L., Giani, C., Agate, L., Bottici, V., Lorusso, L., et al. (2017) Targeted Therapy in Thyroid Cancer: State of the Art. Clinical Oncology Royal College of Ra-diologists, 29, 316-324. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Bikas, A., Vachhani, S., Jensen, K., Vasko, V. and Burman, K.D. (2016) Targeted Therapies in Thyroid Cancer: An Extensive Review of the Literature. Expert Review of Clinical Phar-macology, 9, 1299-1313. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Viola, D., Valerio, L., Molinaro, E., Agate, L., Bottici, V., Biagini, A., et al. (2016) Treatment of Advanced Thyroid Cancer with Targeted Therapies: Ten Years of Experience. En-docrine-Related Cancer, 23, R185-R205. [Google Scholar] [CrossRef]
|
|
[54]
|
Christine Kaae, A., Kreissl, M.C., Krüger, M., Infanger, M., Grimm, D. and Wehland, M. (2021) Kinase-Inhibitors in Iodine-Refractory Differentiated Thyroid Cancer-Focus on Occurrence, Mechanisms, and Management of Treatment-Related Hypertension. International Journal of Molecular Sciencesi, 22, Article No. 12217. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Balmelli, C., Railic, N., Siano, M., Feuerlein, K., Cathomas, R., Cris-tina, V., et al. (2018) Lenvatinib in Advanced Radioiodine-Refractory Thyroid Cancer—A Retrospective Analysis of the Swiss Lenvatinib Named Patient Program. Journal of Cancer, 9, 250-255. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Gianoukakis, A.G., Dutcus, C.E., Batty, N., Guo, M. and Baig, M. (2018) Prolonged Duration of Response in Lenvatinib Responders with Thyroid Cancer. Endocrine-Related Cancer, 25, 699-704. [Google Scholar] [CrossRef]
|
|
[57]
|
Kim, M.J., et al. (2018) Tertiary Care Experience of Sorafenib in the Treatment of Progressive Radioiodine-Refractory Differentiated Thyroid Carcinoma: A Korean Multicenter Study. Thyroid, 28, 340-348. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Molina-Vega, M., García-Alemán, J., Sebastián-Ochoa, A., Man-cha-Doblas, I., Trigo-Pérez, J.M. and Tinahones-Madueño, F. (2018) Tyrosine Kinase Inhibitors in Iodine-Refractory Differentiated Thyroid Cancer: Experience in Clinical Practice. Endocrine, 59, 395-401. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Hu, M.I., Elisei, R., Dedecjus, M., Popovtzer, A., Druce, M., Kapiteijn, E., et al. (2019) Safety and Efficacy of Two Starting Doses of Vandetanib in Advanced Medullary Thyroid Cancer. Endocrine-Related Cancer, 26, 241-250. [Google Scholar] [CrossRef]
|
|
[60]
|
Takahashi, S., Kiyota, N., Yamazaki, T., Chayahara, N., Nakano, K., Inagaki, L., et al. (2019) A Phase II Study of the Safety and Efficacy of Lenvatinib in Patients with Advanced Thyroid Cancer. Future Oncology, 15, 717-726. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Ancker, O.V., Krüger, M., Wehland, M., Infanger, M. and Grimm, D. (2019) Multikinase Inhibitor Treatment in Thyroid Cancer. International Journal of Molecular Sciences, 21, Article No. 10. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Gunda, V., Gigliotti, B., Ndishabandi, D., Ashry, T., McCarthy, M., Zhou, Z., et al. (2018) Combinations of BRAF Inhibitor and Anti-PD-1/PD-L1 Antibody Improve Survival and Tumour Immunity in an Immunocompetent Model of Orthotopic Murine Anaplastic Thyroid Cancer. British Journal of Cancer, 119, 1223-1232. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Zhi, J.T., Zhang, P.T., Zhang, W., Ruan, X., Tian, M., Guo, S., et al. (2021) Inhibition of BRAF Sensitizes Thyroid Carcinoma to Immunotherapy by Enhancing tsMHCII-Mediated Im-mune Recognition. The Journal of Clinical Endocrinology & Metabolism, 106, 91-107. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Parhar, R.S., Zou, M.J., Al-Mohanna, F.A., Baitei, E.Y., Assiri, A.M., Meyer, B.F., et al. (2016) IL-12 Immunotherapy of BrafV600E-Induced Papillary Thyroid Cancer in a Mouse Model. La-boratory Investigation, 96, 89-97. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Song, E.Y., Jin, M., Jang, A., Jeon, M.J., Song, D.E., Yoo, H.J., et al. (2021) Mutation in Genes Encoding Key Functional Groups Additively Increase Mortality in Patients with BRAFV600E-Mutant Advanced Papillary Thyroid Carcinoma. Cancers, 13, 5846. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Choi, Y.-S., Choi, S.-W. and Yi, J.-W. (2021) Prospective Analysis of TERT Promoter Mutations in Papillary Thyroid Carcinoma at a Single Institution. Journal of Clinical Medicine, 10, Article No. 2179. [Google Scholar] [CrossRef] [PubMed]
|
|
[67]
|
Elisei, R., Ugolini, C., Viola, D., Lupi, C., Biagini, A., Giannini, R., et al. (2008) BRAFV600E Mutation and Outcome of Patients with Papillary Thyroid Carcinoma: A 15-Year Median Follow-Up Study. The Journal of Clinical Endocrinology & Metabolism, 93, 3943-3949. [Google Scholar] [CrossRef] [PubMed]
|
|
[68]
|
Oishi, N., Kondo, T., Ebina, A., Sato, Y., Akaishi, J., Hino, R., et al. (2017) Molecular Alterations of Coexisting Thyroid Papillary Carcinoma and Anaplastic Carcinoma: Identification of TERT Mutation as an Independent Risk Factor for Transformation. Modern Pathology, 30, 1527-1537. [Google Scholar] [CrossRef] [PubMed]
|
|
[69]
|
Chen, X., Lin, S., Lin, Y., Wu, S., Zhuo, M., Zhang, A., et al. (2022) BRAF-Activated WT1 Contributes to Cancer Growth and Regulates Autophagy and Apoptosis in Papillary Thy-roid Carcinoma. Journal of Translational Medicine, 20, Article No. 79. [Google Scholar] [CrossRef] [PubMed]
|