[1]
|
Elettreby, M.F. and El-Metwally, H. (2013) On a System of Difference Equations of an Economic Model. Discrete Dynamics in Nature and Society, 2013, Article ID: 405628.
https://doi.org/10.1155/2013/405628
|
[2]
|
Khan, A.Q. and Qureshi, M.N. (2016) Stability Analysis of a Discrete Biological Model. International Journal of Biomathematics, 9, Article ID: 1650021.
https://doi.org/10.1142/S1793524516500212
|
[3]
|
Psarros, N., Papaschinopoulos, G. and Schinas, C.J. (2018) On the Stability of Some Systems of Exponential Difference Equations. Opuscula Mathematica, 38, 95-115.
https://doi.org/10.7494/OpMath.2018.38.1.95
|
[4]
|
Psarros, N., Papaschinopoulos, G. and Schinas, C.J. (2017) Study of the Stability of a 3Χ3 System of Difference Equations Using Centre Manifold Theory. Applied Mathematics Letters, 64, 185-192. https://doi.org/10.1016/j.aml.2016.09.002
|
[5]
|
Dilip, D.S. and Mathew, S.M. (2021) Dynamics of a Second-Order Nonlinear Difference System with Exponents. Journal of the Egyptian Mathematical Society, 29, Article No. 10.
https://doi.org/10.1186/s42787-021-00119-6
|
[6]
|
Din, Q., Elabbasy, E.M., Elsadany, A.A., et al. (2019) Bifurcation Analysis and Chaos Control of a Second-Order Exponential Difference Equation. Filomat, 33, 5003-5022.
https://doi.org/10.2298/FIL1915003D
|
[7]
|
Mylona, C., Papaschinopoulos, G. and Schinas, C.J. (2021) Neimark-Sacker, Flip, and Transcritical Bifurcation in a Close to Symmetric System of Difference Equations with Exponential Terms. Mathematical Methods in the Applied Sciences, 44, 10210-10224.
https://doi.org/10.1002/mma.7400
|
[8]
|
Mylona, C., Papaschinopoulos, G. and Schinas, C.J. (2021) Stability and Flip Bifurcation of a Three Dimensional Exponential System of Difference Equations. Mathematical Methods in the Applied Sciences, 44, 4316-4329. https://doi.org/10.1002/mma.7031
|
[9]
|
Carr, J. (1981) Applications of Center Manifold Theory. Springer, New York.
|
[10]
|
Guckenheimer, J. and Holmes, P. (1983) Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York. https://doi.org/10.1007/978-1-4612-1140-2
|