X -GC -投射复形
X -GC -Projective Complexes
DOI: 10.12677/PM.2022.1210167, PDF, HTML,    国家自然科学基金支持
作者: 李星宇, 赵玉鹏, 赵仁育*:西北师范大学数学与统计学院,甘肃 兰州
关键词: X -GC -投射模X -GC -投射复形半对偶模稳定性X -GC -Projective Module X -GC -Projective Complex Semidualizing Module Stability
摘要: 设 R 是交换环, C 是一个半对偶 R-模, X 是一个 R-模类. 引入了 X -GC -投射复形的概念, 证明了复形 M 是 X -GC -投射的当且仅当 M 的每个层次上的模都是 X -GC -投射模, 并且对任意的 C-X -复 形 N , M 到 N 的复形态射都是零伦的. 作为应用, 由 X -GC -投射模的性质推得了 X -GC -投射复形的一些性质.
Abstract: Let R be a commutative ring, C a semidualizing R-module and X a class of R-modules. The notion of X-GC-projective complexes is introduced, and it is shown that a complex M is X-GC-projective if and only if each degree of M is X-GC-projective and any morphism from M to N is null homotopic whenever N is a C-X-complex. As applications, some properties of X-GC-projective complexes are deduced from those of X-GC-projective modules.
文章引用:李星宇, 赵玉鹏, 赵仁育. X -GC -投射复形[J]. 理论数学, 2022, 12(10): 1537-1549. https://doi.org/10.12677/PM.2022.1210167

参考文献

[1] Auslander, M. and Bridger, M. (1969) Stable Module Theory. In: Memoirs of the American Mathematical Society, No. 94, American Mathematical Society, Providence, RI. [Google Scholar] [CrossRef
[2] Ding, N.Q., Li, Y.L. and Mao, L.X. (2009) Strongly Gorenstein Flat Modules. Journal of the Australian Mathematical Society, 86, 323-338. [Google Scholar] [CrossRef
[3] Mao, L.X. and Ding, N.Q. (2008) Gorenstein FP-Injective and Gorenstein Flat Modules. Journal of Algebra and Its Applications, 7, 491-506. [Google Scholar] [CrossRef
[4] Bravo, D., Gillespie, J. and Hovey, M. (2014) The Stable Module Category of a General Ring. arXiv: 1405-5768
[5] Bennis, D. and Ouarghi, K. (2010) X -Gorenstein Projective Modules. International Mathematical Forum, 5, 487-491.
[6] Meng, F.Y. and Pan, Q.X. (2011) X -Gorenstein Projective and Y-Gorenstein Injective Modules. Hacettepe Journal of Mathematics and Statistics, 40, 537-554.
[7] Holm, H. and White, D. (2007) Foxby Equivalence over Associative Rings. Journal of Mathematics of Kyoto University, 47, 781-808. [Google Scholar] [CrossRef
[8] Hu, J.S. and Geng, Y.X. (2016) Relative Tor Functors for Level Modules with Respect to a Semidualizing Bimodule. Algebras and Representation Theory, 19, 579-597. [Google Scholar] [CrossRef
[9] Holm, H. and Jørgensen, P. (2006) Semi-Dualizing Modules and Related Gorenstein Homological Dimensions. Journal of Pure and Applied Algebra, 205, 423-445. [Google Scholar] [CrossRef
[10] White, D. (2010) Gorenstein Projective Dimension with Respect to a Semidualizing Module. Journal of Commutative Algebra, 2, 111-137. [Google Scholar] [CrossRef
[11] Zhang, C.X., Wang, L.M. and Liu, Z.K. (2013) Ding Projective Modules with Respect to a Semidualizing Module. Bulletin of the Korean Mathematical Society, 51, 339-356.[CrossRef
[12] 杨淑香. X -GC -投射模及维数[D]: [硕士学位论文]. 兰州: 西北师范大学, 2014.
[13] Enochs, E.E. and Garc´ıa Rozas, J.R. (1998) Gorenstein Injective and Projective Complexes. Communications in Algebra, 26, 1657-1674. [Google Scholar] [CrossRef
[14] Yang, X.Y. and Liu, Z.K. (2011) Gorenstein Projective, Injective and Flat Complexes. Communications in Algebra, 39, 1705-1721. [Google Scholar] [CrossRef
[15] Yang, C.H. and Liang, L. (2012) Gorenstein Injective and Projective Complexes with Respect to a Semidualizing Module. Communications in Algebra, 40, 3352-3364. [Google Scholar] [CrossRef
[16] Yang, G., Liu, Z.K. and Liang, L. (2013) Model Structures on Categories of Complexes over Ding-Chen Rings. Communications in Algebra, 41, 50-69. [Google Scholar] [CrossRef
[17] Bravo, D. and Gillespie, J. (2016) Absolutely Clean, Level, and Gorenstein AC-Injective Complexes. Communications in Algebra, 44, 2213-2233. [Google Scholar] [CrossRef
[18] 权艳红. 相对于半对偶模的Ding投射复形[D]: [硕士学位论文]. 兰州: 西北师范大学, 2016.
[19] Zhao, R.Y. and Ding, N.Q. (2017) (W, Y, X )-Gorenstein Complexes. Communications in Algebra, 45, 3075-3090. [Google Scholar] [CrossRef
[20] Gillespie, J. (2004) The Flat Model Structure on Ch(R). Transactions of the American Mathematical Society, 356, 3369-3390. [Google Scholar] [CrossRef
[21] Gao, Z.H. and Wang, F.G. (2015) Weak Injective and Weak Flat Modules. Communications in Algebra, 43, 3857-3868. [Google Scholar] [CrossRef
[22] Holm, H. (2004) Gorenstein Homological Dimensions. Journal of Pure and Applied Algebra, 189, 167-193. [Google Scholar] [CrossRef