|
[1]
|
Siegel, R.L., Miller, K.D., Fuchs, H.E. and Jemal, A. (2021) Cancer Statistics, 2021. CA: A Cancer Journal for Clini-cians, 71, 7-33. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Organ, C.H. and Bold, R.J. (1996) Surgery. JAMA, 275, 1855-1857. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Weingart, S.N., Zhang, L., Sweeney, M. and Hassett, M. (2018) Chemotherapy Medication Errors. The Lancet Oncology, 19, e191-e199. [Google Scholar] [CrossRef]
|
|
[4]
|
Shanmugam, V., Selvakumar, S. and Yeh, C.-S. (2014) Near-Infrared Light-Responsive Nanomaterials in Cancer Therapeutics. Chemical Society Reviews, 43, 6254-6287. [Google Scholar] [CrossRef]
|
|
[5]
|
Zingg, R. and Fischer, M. (2019) The Consolidation of Nanomedicine. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 11, e1569. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Yoo, J.M., Kang, J.H. and Hong, B.H. (2015) Graphene-Based Nano-materials for Versatile Imaging Studies. Chemical Society Reviews, 44, 4835-4852. [Google Scholar] [CrossRef]
|
|
[7]
|
Wang, S., Chen, Y., Li, X., Gao, W., Zhang, L., Liu, J., Zheng, Y., Chen, H. and Shi, J. (2015) Injectable 2D MoS2- Integrated Drug Delivering Implant for Highly Efficient NIR-Triggered Synergistic Tumor Hyperthermia. Advanced Materials (Deerfield Beach, Fla.), 27, 7117-7122. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Mrejen, M., Yadgarov, L., Levanon, A. and Suchowski, H. (2019) Transient Exciton-Polariton Dynamics in WSe by Ultrafast Near-Field Imaging. Science Advances, 5, eaat9618. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Liu, J., Zheng, T. and Tian, Y. (2019) Functionalized h-BN Nanosheets as a Theranostic Platform for SERS Real-Time Monitoring of MicroRNA and Photodynamic Therapy. Angewandte Chemie International Edition, 58, 7757-7761. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Lin, H., Gao, S., Dai, C., Chen, Y. and Shi, J. (2017) A Two-Dimensional Biodegradable Niobium Carbide (MXene) for Photothermal Tumor Eradication in NIR-I and NIR-II Biowindows. Journal of the American Chemical Society, 139, 16235-16247. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Zhi, D., Yang, T., O’Hagan, J., Zhang, S. and Donnelly, R.F. (2020) Photothermal Therapy. Journal of Controlled Release: Official Journal of the Controlled Release Society, 325, 52-71. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Dong, W., Li, Y., Niu, D., Ma, Z., Gu, J., Chen, Y., Zhao, W., Liu, X., Liu, C. and Shi, J. (2011) Facile Synthesis of Monodisperse Superparamagnetic Fe3O4 Core@hybrid@Au Shell Nanocomposite for Bimodal Imaging and Photothermal Therapy. Advanced Materials (Deerfield Beach, Fla.), 23, 5392-5397. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Liu, S., Pan, X. and Liu, H. (2020) Two-Dimensional Nanomaterials for Photothermal Therapy. Angewandte Chemie International Edition, 59, 5890-5900. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Yang, B., Chen, Y. and Shi, J. (2019) Reactive Oxygen Species (ROS)-Based Nanomedicine. Chemical Reviews, 119, 4881-4985. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Liang, J. and Liu, B. (2016) ROS-Responsive Drug Delivery Systems. Bioengineering & Translational Medicine, 1, 239-251. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Soldevila-Barreda, J.J. and Metzler-Nolte, N. (2019) Intracellular Cataly-sis with Selected Metal Complexes and Metallic Nanoparticles: Advances toward the Development of Catalytic Metal-lodrugs. Chemical Reviews, 119, 829-869. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Liu, H., Neal, A.T., Zhu, Z., Luo, Z., Xu, X., Tománek, D. and Ye, P.D. (2014) Phosphorene: An Unexplored 2D Semiconductor with a High Hole Mobility. ACS Nano, 8, 4033-4041. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Zhu, X., Ji, X., Kong, N., Chen, Y., Mahmoudi, M., Xu, X., Ding, L., Tao, W., Cai, T., Li, Y., Gan, T., Barrett, A., Bharwani, Z., Chen, H. and Farokhzad, O.C. (2018) Intracellular Mechanistic Understanding of 2D MoS Nanosheets for Anti-Exocytosis-Enhanced Synergistic Cancer Therapy. ACS Nano, 12, 2922-2938. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Chen, P., Zhang, Z., Duan, X. and Duan, X. (2018) Chemical Syn-thesis of Two-Dimensional Atomic Crystals, Heterostructures and Superlattices. Chemical Society Reviews, 47, 3129-3151. [Google Scholar] [CrossRef]
|
|
[20]
|
Geim, A.K. and Novoselov, K.S. (2007) The Rise of Gra-phene. Nature Materials, 6, 183-191. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Zhu, Y., Wang, Y., Williams, G.R., Fu, L., Wu, J., Wang, H., Liang, R., Weng, X. and Wei, M. (2020) Multicomponent Transition Metal Dichalcogenide Nanosheets for Imaging-Guided Pho-tothermal and Chemodynamic Therapy. Advanced Materials, 7, Article ID: 2000272. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. and Kis, A. (2011) Single-Layer MoS2 Transistors. Nature Nanotechnology, 6, 147-150. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Lembke, D., Bertolazzi, S. and Kis, A. (2015) Single-Layer MoS2 Electronics. Accounts of Chemical Research, 48, 100-110. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Cheng, L., Wang, X., Gong, F., Liu, T. and Liu, Z. (2020) 2D Nanomaterials for Cancer Theranostic Applications. Advanced Materials (Deerfield Beach, Fla.), 32, e1902333. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Anju, S., Ashtami, J. and Mohanan, P.V. (2019) Black Phosphorus, a Prospective Graphene Substitute for Biomedical Applications. Materials Science & Engineering C—Materials for Biological Applications, 97, 978-993. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Fan, H., Yan, G., Zhao, Z., Hu, X., Zhang, W., Liu, H., Fu, X., Fu, T., Zhang, X.-B. and Tan, W. (2016) A Smart Photosensitizer-Manganese Dioxide Nanosystem for Enhanced Photody-namic Therapy by Reducing Glutathione Levels in Cancer Cells. Angewandte Chemie International Edition, 55, 5477-5482. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Qu, G., Xia, T., Zhou, W., Zhang, X., Zhang, H., Hu, L., Shi, J., Yu, X.-F. and Jiang, G. (2020) Property-Activity Relationship of Black Phosphorus at the Nano-Bio Interface: From Molecules to Organisms. Chemical Reviews, 120, 2288-2346. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Ambrosi, A., Sofer, Z. and Pumera, M. (2017) Electrochemical Exfoliation of Layered Black Phosphorus into Phosphorene. Angewandte Chemie International Edition, 56, 10443-10445. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Shao, J., Xie, H., Huang, H., Li, Z., Sun, Z., Xu, Y., Xiao, Q., Yu, X.-F., Zhao, Y., Zhang, H., Wang, H. and Chu, P.K. (2016) Biodegradable Black Phosphorus-Based Nanospheres for in Vivo Photothermal Cancer Therapy. Nature Communications, 7, Article No. 12967. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Liu, J., Du, P., Mao, H., Zhang, L., Ju, H. and Lei, J. (2018) Du-al-Triggered Oxygen Self-Supply Black Phosphorus Nanosystem for Enhanced Photodynamic Therapy. Biomaterials, 172, 83-91. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Liu, Y., Bhattarai, P., Dai, Z. and Chen, X. (2019) Photo-thermal Therapy and Photoacoustic Imaging via Nanotheranostics in Fighting Cancer. Chemical Society Reviews, 48, 2053-2108. [Google Scholar] [CrossRef]
|
|
[32]
|
Wang, H., Yang, X., Shao, W., Chen, S., Xie, J., Zhang, X., Wang, J. and Xie, Y. (2015) Ultrathin Black Phosphorus Nanosheets for Efficient Singlet Oxygen Generation. Journal of the American Chemical Society, 137, 11376-11382. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Plutnar, J., Sofer, Z. and Pumera, M. (2018) Products of Degradation of Black Phosphorus in Protic Solvents. ACS Nano, 12, 8390-8396. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Zhang, T., Wan, Y., Xie, H., Mu, Y., Du, P., Wang, D., Wu, X., Ji, H. and Wan, L. (2018) Degradation Chemistry and Stabilization of Exfoliated Few-Layer Black Phosphorus in Water. Journal of the American Chemical Society, 140, 7561-7567. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Abellán, G., Wild, S., Lloret, V., Scheuschner, N., Gillen, R., Mundloch, U., Maultzsch, J., Varela, M., Hauke, F. and Hirsch, A. (2017) Fundamental Insights into the Degradation and Stabilization of Thin Layer Black Phosphorus. Journal of the American Chemical Society, 139, 10432-10440. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Guo, L., Panderi, I., Yan, D.D., Szulak, K., Li, Y., Chen, Y.-T., Ma, H., Niesen, D.B., Seeram, N., Ahmed, A., Yan, B., Pantazatos, D. and Lu, W. (2013) A Comparative Study of Hollow Copper Sulfide Nanoparticles and Hollow Gold Nanospheres on Degra-dability and Toxicity. ACS Nano, 7, 8780-8793. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Shao, J., Ruan, C., Xie, H., Li, Z., Wang, H., Chu, P.K. and Yu, X.F. (2018) Black-Phosphorus-Incorporated Hydrogel as a Sprayable and Bio-degradable Photothermal Platform for Postsurgical Treatment of Cancer. Advanced Science (Weinh), 5, Article ID: 1700848. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Hu, K., Xie, L., Zhang, Y., Hanyu, M., Yang, Z., Nagatsu, K., Suzuki, H., Ouyang, J., Ji, X., Wei, J., Xu, H., Farokhzad, O.C., Liang, S.H., Wang, L., Tao, W. and Zhang, M.R. (2020) Marriage of Black Phosphorus and Cu(2+) as Effective Photothermal Agents for PET-Guided Combination Can-cer Therapy. Nature Communications, 11, Article No. 2778. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Hu, K.X.L., Zhang, Y., Hanyu, M., Yang, Z., Nagatsu, K., Suzuki, H., Ouyang, J., Ji, X., Wei, J., Xu, H., Farokhzad, O.C., Liang, S.H., Wang, L., Tao, W. and Zhang, M.R. Supplementary Information for Marriage of Black Phosphorus and Cu2+ as Effective Photothermal Agents for PET-Guided Combination Cancer Therapy.
https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-020-16513-0/MediaObjects/41467_2020_16513_MOESM1_ESM.pdf
|
|
[40]
|
Liu, J., Du, P., Liu, T., Cordova Wong, B.J., Wang, W., Ju, H. and Lei, J. (2019) A Black Phosphorus/Manganese Dioxide Nanoplatform: Oxygen Self-Supply Monitoring, Photodynamic Therapy Enhancement and Feedback. Biomaterials, 192, 179-188. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Huang, H., He, L., Zhou, W., Qu, G., Wang, J., Yang, N., Gao, J., Chen, T., Chu, P.K. and Yu, X.F. (2018) Stable Black Phospho-rus/Bi2O3 Heterostructures for Synergistic Cancer Radiotherapy. Biomaterials, 171, 12-22. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Xue, C., Sutrisno, L., Li, M., Zhu, W., Fei, Y., Liu, C., Wang, X., Cai, K., Hu, Y. and Luo, Z. (2021) Implantable Multifunctional Black Phosphorus Nanoformula-tion-Deposited Biodegradable Scaffold for Combinational Photothermal/Chemotherapy and Wound Healing. Biomateri-als, 269, Article ID: 120623. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Chen, W., Ouyang, J., Liu, H., Chen, M., Zeng, K., Sheng, J., Liu, Z., Han, Y., Wang, L., Li, J., Deng, L., Liu, Y.N. and Guo, S. (2017) Black Phosphorus Nanosheet-Based Drug Delivery System for Synergistic Photodynamic/Photothermal/ Chemotherapy of Cancer. Advanced Materials, 29, Article ID: 1603864. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Zhou, W.H., Pan, T., Cui, H.D., Zhao, Z., Chu, P.K. and Yu, X.F. (2019) Black Phosphorus: Bioactive Nanomaterials with Inherent and Selective Chemotherapeutic Effects. Angewandte Chemie International Edition, 58, 769-774. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Wan, L., Pantel, K. and Kang, Y. (2013) Tumor Metastasis: Moving New Biological Insights into the Clinic. Nature Medicine, 19, 1450-1464. [Google Scholar] [CrossRef] [PubMed]
|