|
[1]
|
Wang, F.H., Zhang, X.T., Li, Y.F., et al. (2021) The Chinese Society of Clinical Oncology (CSCO): Clinical Guidelines for the Diagnosis and Treatment of Gastric Cancer, 2021. Cancer Communications (London), 41, 747-795. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Song, Z., Wu, Y., Yang, J., Yang, D. and Fang, X. (2017) Progress in the Treatment of Advanced Gastric Cancer. Tumor Biology, 39. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
艾晓青, 窦磊. 外泌体优化策略的研究进展[J]. 临床医学研究与践, 2021, 6(16): 190-192.
|
|
[4]
|
Tiwari, S., Kumar, V., Randhawa, S., et al. (2021) Preparation and Characterization of Extracellular Vesicles. American Journal of Reproductive Immunology, 85, e13367. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Ruffell, B. and Coussens, L.M. (2015) Macro-phages and Therapeutic Resistance in Cancer. Cancer Cell, 27, 462-472. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Cardoso, A.P., Pinto, M.L., Pinto, A.T., et al. (2014) Macrophages Stimulate Gastric and Colorectal Cancer Invasion through EGFR Y (1086), c-Src, Erk1/2 and Akt Phosphorylation and Small GTPase Activity. Oncogene, 33, 2123-2133. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Chen, W., Zheng, R., Baade, P.D., Zhang, S., Zeng, H., Bray, F., Jemal, A., Yu, X.Q. and He, J. (2016) Cancer Statistics in China, 2015. CA: A Cancer Journal for Clinicians, 66, 115-132. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Yusefi, A.R., Bagheri Lan-karani, K., Bastani, P., Radinmanesh, M. and Kavosi, Z. (2018) Risk Factors for Gastric Cancer: A Systematic Review. Asian Pacific Journal of Cancer Prevention, 19, 591-603.
|
|
[9]
|
Chung, C.S., Lee, Y.C. and Wu, M.S. (2015) Prevention Strategies for Esophageal Cancer: Perspectives of the East vs. West. Best Practice & Research. Clinical Gastroenterology, 29, 869-883. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Tsai, M.M., Wang, C.S., Tsai, C.Y., Huang, H.W., Chi, H.C., Lin, Y.H., Lu, P.H. and Lin, K.H. (2016) Potential Diagnostic, Prognostic and Therapeutic Targets of Mi-croRNAs in Human Gastric Cancer. International Journal of Molecular Sciences, 17, Article No. 945. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Emoto, S., Ishigami, H., Yamashita, H., Yamaguchi, H., Kaisaki, S. and Kitayama, J. (2012) Clinical Significance of CA125 and CA72-4 in Gastric Cancer with Peritoneal Dissemination. Gas-tric Cancer, 15, 154-161. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
陈德义, 苏刚, 刘骥飞, 吴琼慧, 陈玮, 张振昶. 外泌体载体治疗在中枢神经系统疾病中的研究进展[J]. 中国细胞生物学学报, 2021, 43(8): 1650-1657.
|
|
[13]
|
Zhou, Y.Y., et al. (2017) Exosome Transfer among Different Species Cells and Mediating miRNAs Delivery. Journal of Cellular Bio-chemistry, 118, 4267-4274. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Zhang, Y., Bi, J., Huang, J., Tang, Y., Du, S. and Li, P. (2020) Exosome: A Review of Its Classification, Isolation Techniques, Storage, Diagnostic and Targeted Therapy Applications. International Journal of Nanomedicine, 15, 6917-6934. [Google Scholar] [CrossRef]
|
|
[15]
|
Cheng, L., Zhang, K., Wu, S.Y., Cui, M.H. and Xu, T.M. (2017) Focus on Mesenchymal Stem Cell-Derived Exosome: Opportunities and Challenges in Cell-Free Therapy. Stem Cells Interna-tional, 2017, Article ID: 6305295. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
He, C.Q., Hua, W., Liu, J.T., Fan, L.L., Wang, H. and Sun, G.P. (2020) Exosome Derived from Endoplasmic Reticulum-Stressed Liver Cancer Cells Enhance the Expression of Cytokines in Macrophages via the STAT3 Signaling Pathway. Oncology Letters, 20, 589-600. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Li, D.P., Wang, Y., Jin, X.R., et al. (2020) NK Cell-Derived Exosome Carry miR-207 and Alleviate Depression-Like Symptoms in Mice. Journal of Neuroinflammation, 17, Article No. 126. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Zhao, D.Y., Yu, Z.C., Li, Y., Wang, Y., Li, Q.F. and Han, D. (2020) GelMA Combined with Sustained Release of HUVECs Derived Exosome for Promoting Cutaneous Wound Healing and Facilitating Skin Regeneration. Journal of Molecular Histology, 51, 251-263. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Thery, C., Witwer, K., Aikawa, E., et al. (2018) Minimal Infor-mation for Studies of Extracellular Vesicles 2018 (MISEV2018): A Position Statement of the International Society for Extracellular Vesicles and Update of the MISEV2014 Guidelines. Journal of Extracellular Vesicles, 7, Article ID: 1535750. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
黄哲. 缺氧大肠癌细胞来源的外泌体通过Wnt4介导的β-catenin信号通路促进肿瘤血管新生及转移的机制研究[D]: [博士学位论文]. 沈阳: 中国医科大学, 2019.
|
|
[21]
|
苏刚. 分泌蛋白及外泌体对肝癌细胞影响的蛋白质组学研究[D]: [博士学位论文]. 兰州: 兰州大学, 2018.
|
|
[22]
|
Abdelnaby, K., et al. (2016) Circulating Exosome Potentiate Tumor Malignant Properties in a Mouse Model of Chronic Sleep Fragmentation. Oncotarget, 7, 54676-54690. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
张佳佳, 苏刚, 陈丽霞, 王满侠, 周娟平, 高娟, 张振昶. 缺氧条件下中枢神经系统外泌体作用机制[J]. 中国细胞生物学学报, 2021, 43(1): 103-109.
|
|
[24]
|
王琳琳, 朱桂全, 李灵. 缺氧肿瘤微环境中外泌体参与免疫调控的研究进展[J]. 细胞与分子免疫学杂志, 2021, 37(7): 651-656.
|
|
[25]
|
Walbrecq, G., et al. (2020) Distinct Cargos of Small Extracellular Vesicles Derived from Hypoxic Cells and Their Effect on Cancer Cells. International Journal of Molecular Sciences, 21, Article No. 5071. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Kuo, T.C., Kung, H.J. and Shih, J.W. (2020) Signaling in and out: Long-Noncoding RNAs in Tumor Hypoxia. Journal of Biomedical Science, 27, Article No. 59. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Doyle, L.M. and Wang, M.Z. (2019) Overview of Extracellular Vesicles, Their Origin, Composition, Purpose, and Methods for Exosome Isolation and Analysis. Cells, 8, Article No. 727. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Taheri, B., Soleimani, M., Aval, S.F., Memari, F. and Zarghami, N. (2018) C6 Glioma-Derived Microvesicles Stimulate the Proliferative and Metastatic Gene Expression of Normal Astro-cytes. Neuroscience Letters, 685, 173-178. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Laviron, M. and Boissonnas, A. (2019) Ontogeny of Tu-mor-Associated Macrophages. Frontiers in Immunology, 10, Article No. 1799. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Isidro, R.A. and Appleyard, C.B. (2016) Colonic Macrophage Po-larization in Homeostasis, Inflammation, and Cancer. The American Journal of Physiology-Gastrointestinal and Liver Physiology, 311, G59-G73. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
谢玙玙, 段昕所. 肿瘤微环境下巨噬细胞的极化和靶向治疗意义[J]. 华西医学, 2021, 36(5): 679-685.
|
|
[32]
|
Singh, S., Mehta, N., Jiang, L.L., et al. (2017) Initiative Action of Tumor Associated Macrophage during Tumor Metastasis. Biochimie Open, 4, 8-18. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
王一晨, 杨文山, 董宪喆, 胡园. 肿瘤相关巨噬细胞的作用综述[J]. 解放军医学院学报, 2021, 42(12): 1315-1321.
|
|
[34]
|
Vitale, I., Manic, G., Coussens, L.M., Kroemer, G. and Galluzzi, L. (2019) Macrophages and Metabolism in the Tumor Microenvironment. Cell Metabolism, 30, 36-50. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Oya, Y., Hayakawa, Y. and Koike, K. (2020) Tumor Microenvi-ronment in Gastric Cancers. Cancer Science, 111, 2696-2707. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Netea-Maier, R.T., Smit, J.W.A. and Netea, M.G. (2018) Metabolic Changes in Tumor Cells and Tumor-Associated Macrophages: A Mutual Relationship. Cancer Letters, 413, 102-109. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Lewis, C.E. and Pollard, J.W. (2006) Distinct Role of Macrophages in Different Tumor Microenvironments. Cancer Research, 66, 605-612. [Google Scholar] [CrossRef]
|
|
[38]
|
李丽伟. 胃癌中PTEN低表达通过上调P-AURKA调节AURKA是维持胃癌恶性表型的本质[D]: [硕士学位论文]. 天津: 天津医科大学, 2018.
|
|
[39]
|
Wang, D., Boerner, S.A., Winkler, J.D., et al. (2007) Clinical Experience of MEK Inhibitors in Cancer Therapy. Biochimicaet Biophysica Acta, 1773, 1248-1255. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Martin-Liberal, J., Lagares-Tena, L. and Larkin, J. (2014) Pro-spects for MEK Inhibitors for Treating Cancer. Expert Opinion Drug Safety, 13, 483-495. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Chen, H., Jin, Z.L. and Xu, H. (2016) MEK/ERK Signaling Pathway in Apoptosis of SW620 Cell Line and Inhibition Effect of Resveratrol. Asian Pacific Journal of Tropical Medi-cine, 9, 49-53. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Li, B., Lv, L. and Li, W. (2020) 1,25-Dihydroxy Vitamin D3 In-hibits the Ras-MEK-ERK Pathway and Regulates Proliferation and Apoptosis of Papillary Thyroid Carcinoma. Steroids, 159, Article ID: 108585. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Zhao, J., Klausen, C., Yi, Y., et al. (2020) Betacellulin En-hances Ovarian Cancer Cell Migration by Up-Regulating Connexin43 via MEK-ERK Signaling. Cell Signal, 65, Article ID: 109439. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Ma, R., Wang, L., Yuan, F., et al. (2018) FABP7 Promotes Cell Proliferation and Survival in Colon Cancer through MEK/ERK Signaling Pathway. Biomedicine & Pharmacotherapy, 108, 119-129. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Buscà, R., Christen, R., Lovern, M., et al. (2015) ERK1 and ERK2 Present Functional Redundancy in Tetrapods Despite Higher Evolution Rate of ERK1. BMC Evolutionary Biology, 15, Article No. 179. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Reddy, K.B., Nabha, S.M. and Atanaskova, N. (2003) Role of MAP Kinase in Tumor Progression and Invasion. Cancer and Metastasis Reviews, 22, 395-403. [Google Scholar] [CrossRef]
|
|
[47]
|
Sun, Y., Liu, W.Z., Liu, T., et al. (2015) Signaling Pathway of MAPK/ERK in Cell Proliferation, Differentiation, Migration, Senescence and Apoptosis. Journal of Receptor and Signal Transduction Research, 35, 600-604. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Calvo, N., Martín, M.J., De Boland, A.R., et al. (2014) In-volvement of ERK1/2, p38 MAPK, and PI3K/Akt Signaling Pathways in the Regulation of Cell Cycle Progression by PTHrP in Colon Adenocarcinoma Cells. Biochemistry and Cell Biology, 92, 305-315. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Chambard, J.C., Lefloch, R., Pouysségur, J. and Lenormand, P. (2007) ERK Implication in Cell Cycle Regulation. Biochimica et Biophysica Acta, 1773, 1299-1310. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
陆紫媛, 肖扬, 李力, 王耀春. TNF-α通过ERK信号通路刺激骨髓间充质干细胞表达VCAM-1 [J]. 中国实验血液学杂志, 2013, 21(6): 1568-1571.
|