|
[1]
|
Sender, R., Fuchs, S. and Milo, R. (2016) Are We Really Vastly Outnumbered? Revisiting the Ratio of Bacterial to Host Cells in Humans. Cell, 164, 337-340. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Locey, K.J. and Lennon, J.T. (2016) Scaling Laws Predict Global Microbial Diversity. Proceedings of the National Academy of Sciences of the United States of America, 113, 5970-5975. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Gilbert, J.A., Blaser, M.J., Caporaso, J.G., et al. (2018) Current Understanding of the Human Microbiome. Nature Medicine, 24, 392-400. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Lu, D., Huang, Y., Kong, Y., et al. (2020) Gut Microecology: Why Our Mi-crobes Could Be Key to Our Health. Biomedicine & Pharmacotherapy, 131, Article ID: 110784. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Nie, Y., Luo, F. and Lin, Q. (2018) Dietary Nutrition and Gut Microflora: A Promising Target for Treating Diseases. Trends in Food Science & Technology, 75, 72-80. [Google Scholar] [CrossRef]
|
|
[6]
|
王璐瑶. 知识图谱在撰写研究综述中的应用——以国内非物质文化遗产研究为例[J]. 机电兵船档案, 2019(1): 64-67.
|
|
[7]
|
Chen, C. (2004) Searching for Intellectual Turning Points: Progressive Knowledge Domain Visualization. Proceedings of the National Academy of Sciences of the United States of America, 101, 5303-5310. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Chen, C.M. (2006) CiteSpace II: Detecting and Visualizing Emerg-ing Trends and Transient Patterns in Scientific Literature. Journal of the American Society for Information Science and Technology, 57, 359-377. [Google Scholar] [CrossRef]
|
|
[9]
|
Cornick, S., Tawiah, A. and Chadee, K. (2015) Roles and Regulation of the Mucus Barrier in the Gut. Tissue Barriers, 3, e982426. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Ciccia, F., Guggino, G., Rizzo, A., et al. (2017) Dysbiosis and Zonulin Upregulation Alter Gut Epithelial and Vascular Barriers in Patients with Ankylosing Spondylitis. Annals of the Rheumatic Diseases, 76, 1123-1132. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Corfield, A.P. (2015) Mucins: A Biologically Relevant Glycan Barrier in Mucosal Protection. Biochimica et Biophysica Acta-General Subjects, 1850, 236-252. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Martens, E.C., Neumann, M. and Desai, M.S. (2018) Interac-tions of Commensal and Pathogenic Microorganisms with the Intestinal Mucosal Barrier. Nature Reviews Microbiology, 216, 457-470. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Johansson, M.E.V., Jakobsson, H.E., Holmen-Larsson, J., et al. (2015) Normalization of Host Intestinal Mucus Layers Requires Long-Term Microbial Colonization. Cell Host & Mi-crobe, 18, 582-592. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Johansson, M.E.V., Ambort, D., Pelaseyed, T., et al. (2011) Composition and Functional Role of the Mucus Layers in the Intestine. Cellular and Molecular Life Sciences, 68, 3635-3641. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Hansson, G.C. (2019) Mucus and Mucins in Diseas-es of the Intestinal and Respiratory Tracts. Journal of Internal Medicine, 285, 479-490. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Birchenough, G., Schroeder, B.O., Backhed, F., et al. (2019) Dietary De-stabilisation of the Balance between the Microbiota and the Colonic Mucus Barrier. Gut Microbes, 10, 246-250. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Gensollen, T., Iyer, S.S., Kasper, D.L., et al. (2016) How Colonization by Microbiota in Early Life Shapes the Immune System. Science, 352, 539-544. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Macpherson, A.J., de Agueero, M.G. and Ganal-Vonarburg, S.C. (2017) How Nutrition and the Maternal Microbiota Shape the Neonatal Immune System. Nature Reviews Immunology, 17, 508-517. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Belkaid, Y. and Harrison, O.J. (2017) Homeostatic Immunity and the Microbiota. Immunity, 46, 562-576. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Turnbaugh, P.J., Hamady, M., Yatsunenko, T., et al. (2009) A Core Gut Microbiome in Obese and Lean Twins. Nature, 457, 480-487. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Penders, J., Thijs, C., van den Brandt, P.A., et al. (2007) Gut Microbiota Composition and Development of Atopic Manifestations in Infancy: The Koala Birth Cohort Study. Gut, 56, 661-667. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Forslund, K., Hildebrand, F., Nielsen, T., et al. (2015) Disentangling Type 2 Diabetes and Metformin Treatment Signatures in the Human Gut Microbiota. Nature, 528, 262-266. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Dominguez-Bello, M.G., Costello, E.K., Contreras, M., et al. (2010) De-livery Mode Shapes the Acquisition and Structure of the Initial Microbiota across Multiple Body Habitats in Newborns. Proceedings of the National Academy of Sciences of the United States of America, 107, 11971-11975. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Gronlund, M.M., Lehtonen, O.P., Eerola, E., et al. (1999) Fecal Microflora in Healthy Infants Born by Different Methods of Delivery: Permanent Changes in Intestinal Flora after Ce-sarean Delivery. Journal of Pediatric Gastroenterology and Nutrition, 28, 19-25. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Lederberg, J. and McCray, A.T. (2001) “Ome Sweet” Omics—A Genealogical Treasury of Words. Scientist, 15, Article No. 8.
|
|
[26]
|
Yatsunenko, T., Rey, F.E., Manary, M.J., et al. (2012) Human Gut Microbiome Viewed across Age and Geography. Nature, 486, 222-227. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Velly, H., Britton, R.A. and Preidis, G.A. (2017) Mechanisms of Cross-Talk between the Diet, the Intestinal Microbiome, and the Undernourished Host. Gut Microbes, 8, 98-112. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Willers, M., Ulas, T., Voellger, L., et al. (2020) S100A8 and S100A9 Are Important for Postnatal Development of Gut Microbiota and Immune System in Mice and Infants. Gastro-enterology, 159, 2130-2145.e5. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Vogl, T., Stratis, A., Wixler, V., et al. (2018) Autoinhibitory Regulation of S100A8/S100A9 Alarmin Activity Locally Restricts Sterile Inflammation. Journal of Clinical Investigation, 128, 1852-1866. [Google Scholar] [CrossRef]
|
|
[30]
|
Heinemann, A.S., Pirr, S., Fehlhaber, B., et al. (2017) In Neonates S100A8/S100A9 Alarmins Prevent the Expansion of a Specific Inflammatory Monocyte Population Promoting Septic Shock. FASEB Journal, 31, 1153-1164. [Google Scholar] [CrossRef]
|
|
[31]
|
Wells, J.M., Brummer, R.J., Derrien, M., et al. (2017) Homeostasis of the Gut Barrier and Potential Biomarkers. American Journal of Physiology-Gastrointestinal and Liver Physiology, 312, G171-G193. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
van der Post, S., Jabbar, K.S., Birchenough, G., et al. (2019) Struc-tural Weakening of the Colonic Mucus Barrier Is an Early Event in Ulcerative Colitis Pathogenesis. Gut, 68, 2142-2151. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Petersson, J., Schreiber, O., Hansson, G.C., et al. (2011) Im-portance and Regulation of the Colonic Mucus Barrier in a Mouse Model of Colitis. American Journal of Physiolo-gy-Gastrointestinal and Liver Physiology, 300, G327-G333. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Donaldson, G.P., Lee, S.M. and Mazmanian, S.K. (2016) Gut Bio-geography of the Bacterial Microbiota. Nature Reviews Microbiology, 14, 20-32. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Lynch, S.V. and Pedersen, O. (2016) The Human Intestinal Microbiome in Health and Disease. New England Journal of Medicine, 375, 2369-2379. [Google Scholar] [CrossRef]
|
|
[36]
|
Kalinkovich, A. and Livshits, G. (2019) A Cross Talk between Dysbiosis and Gut-Associated Immune System Governs the Development of Inflammatory Arthropathies. Seminars in Arthritis and Rheumatism, 49, 474-484. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Van de Wiele, T., Van Praet, J.T., Marzorati, M., et al. (2016) How the Microbiota Shapes Rheumatic Diseases. Nature Reviews Rheumatology, 12, 398-411. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Tanoue, T., Atarashi, K. and Honda, K. (2016) Development and Maintenance of Intestinal Regulatory T Cells. Nature Reviews Immunology, 16, 295-309. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Opazo, M.C., Ortega-Rocha, E.M., Coronado-Arrazola, I., et al. (2018) Intestinal Microbiota Influences Non-Intestinal Related Autoimmune Diseases. Frontiers in Microbiology, 9, Article No. 432. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Shi, N., Li, N., Duan, X., et al. (2017) Interaction between the Gut Microbiome and Mucosal Immune System. Military Medical Research, 4, Article No. 14. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Koh, A., De Vadder, F., Kovatcheva-Datchary, P., et al. (2016) From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites. Cell, 165, 1332-1345. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Everard, A., Belzer, C., Geurts, L., et al. (2013) Cross-Talk between Akkermansia muciniphila and Intestinal Epithelium Controls Diet-Induced Obesity. Proceedings of the National Academy of Sciences of the United States of America, 110, 9066-9071. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Ramirez, J., Guarner, F., Fernandez, L.B., et al. (2020) Antibiotics as Major Disruptors of Gut Microbiota. Frontiers in Cellular and Infection Microbiology, 10, Article ID: 572912. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Araujo, J.R., Tomas, J., Brenner, C., et al. (2017) Impact of High-Fat Diet on the Intestinal Microbiota and Small Intestinal Physiology before and after the Onset of Obesity. Bio-chimie, 141, 97-106. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Kolodziejczyk, A.A., Zheng, D. and Elinav, E. (2019) Di-et-Microbiota Interactions and Personalized Nutrition. Nature Reviews Microbiology, 17, 742-753. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Sukhum, K.V., Diorio-Toth, L. and Dantas, G. (2019) Genomic and Metagenomic Approaches for Predictive Surveillance of Emerging Pathogens and Antibiotic Resistance. Clinical Pharmacology & Therapeutics, 106, 512-524. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Boolchandani, M., D’Souza, A.W. and Dantas, G. (2019) Sequencing-Based Methods and Resources to Study Antimicrobial Resistance. Nature Reviews Genetics, 20, 356-370. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Doyle, R.M., O’Sullivan, D.M., Aller, S.D., et al. (2020) Dis-cordant Bioinformatic Predictions of Antimicrobial Resistance from Whole-Genome Sequencing Data of Bacterial Iso-lates: An Inter-Laboratory Study. Microbial Genomics, 6, Article ID: 0003352. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Rohde, C., Wittmann, J. and Kutter, E. (2018) Bacteriophages: A Therapy Concept against Multi-Drug-Resistant Bacteria. Surgical Infections, 19, 737-744. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Bermudez-Brito, M., Plaza-Diaz, J., Munoz-Quezada, S., et al. (2012) Probiotic Mechanisms of Action. Annals of Nutrition and Metabolism, 61, 160-174. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Bron, P.A., Kleerebezem, M., Brummer, R., et al. (2017) Can Probiotics Modulate Human Disease by Impacting Intestinal Barrier Function? British Journal of Nutrition, 117, 93-107. [Google Scholar] [CrossRef]
|
|
[52]
|
Schroeder, B.O., Birchenough, G.M.H., Stahlman, M., et al. (2018) Bifidobacteria or Fiber Protects against Diet-Induced Microbiota-Mediated Colonic Mucus Deterioration. Cell Host & Microbe, 23, 27-40.e7. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Cani, P.D. (2018) Human Gut Microbiome: Hopes, Threats and Promises. Gut, 67, 1716-1725. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Dunne, C., O’Mahony, L., Murphy, L., et al. (2001) In Vitro Se-lection Criteria for Probiotic Bacteria of Human Origin: Correlation with in Vivo Findings. American Journal of Clinical Nutrition, 73, 386S-392S. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Denou, E., Pridmore, R.D., Berger, B., et al. (2008) Identification of Genes Associated with the Long-Gut-Persistence Phenotype of the Probiotic Lactobacillus johnsonii Strain NCC533 Using a Combination of Genomics and Transcriptome Analysis. Journal of Bacteriology, 190, 3161-3168. [Google Scholar] [CrossRef]
|
|
[56]
|
Mathipa, M.G. and Thantsha, M.S. (2017) Probiotic Engineering: To-wards Development of Robust Probiotic Strains with Enhanced Functional Properties and for Targeted Control of Enteric Pathogens. Gut Pathogens, 9, Article No. 28. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Plaza-Diaz, J., Javier Ruiz-Ojeda, F., Gil-Campos, M., et al. (2019) Mechanisms of Action of Probiotics. Advances in Nutrition, 101, S49-S66. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Scher, J.U., Nayak, R.R., Ubeda, C., et al. (2020) Pharmacomicro-biomics in Inflammatory Arthritis: Gut Microbiome as Modulator of Therapeutic Response. Nature Reviews Rheumatol-ogy, 16, 282-292. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Sousa, T., Paterson, R., Moore, V., et al. (2008) The Gastrointes-tinal Microbiota as a Site for the Biotransformation of Drugs. International Journal of Pharmaceutics, 363, 1-25. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Birer, C. and Wright, E.S. (2019) Capturing the Complex Inter-play between Drugs and the Intestinal Microbiome. Clinical Pharmacology & Therapeutics, 106, 501-504. [Google Scholar] [CrossRef] [PubMed]
|