|
[1]
|
Bian, X., Liu, R., Meng, Y., Xing, D., Xu, D. and Lu, Z. (2021) Lipid Metabolism and Cancer. Journal of Experimental Medicine, 218, e20201606. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Louandre, C., Marcq, I., Bouhlal, H., et al. (2015) The Retinoblastoma (Rb) Protein Regulates Ferroptosis Induced by Sorafenib in Human Hepatocellular Carcino-ma Cells. Cancer Letters, 356, 971-977. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Perusina Lanfranca, M., Thompson, J.K., Bednar, F., Halbrook, C., Lyssiotis, C., Levi, B. and Frankel, T.L. (2019) Metabolism and Epigenetics of Pancreatic Cancer Stem Cells. Semi-nars in Cancer Biology, 57, 19-26. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Beloribi-Djefaflia, S., Vasseur, S. and Guillaumond, F. (2016) Lipid Metabolic Reprogramming in Cancer Cells. Oncogenesis, 5, e189. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Dirat, B., Bochet, L., Dabek, M., Daviaud, D., Dauvillier, S., Majed, B., Wang, Y.Y., Meulle, A., Salles, B., Le Gonidec, S., Garrido, I., Escourrou, G., Valet, P. and Muller, C. (2011) Can-cer-Associated Adipocytes Exhibit an Activated Phenotype and Contribute to Breast Cancer Invasion. Cancer Research, 71, 2455-2465. [Google Scholar] [CrossRef]
|
|
[6]
|
Epstein, T., Xu, L., Gillies, R.J. and Gatenby, R.A. (2014) Separation of Metabolic Supply and Demand: Aerobic Glycolysis as a Normal Physiological Response to Fluctuating Energetic Demands in the Membrane. Cancer & Metabolism, 2, Article No. 7. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Li, L. and Li, W. (2015) Epithelial-Mesenchymal Transition in Human Cancer: Comprehensive Reprogramming of Metabolism, Epigenetics, and Differentiation. Pharmacology & Therapeutics, 150, 33-46. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Yu, X.H., Ren, X.H., Liang, X.H. and Tang, Y.L. (2018) Roles of Fatty Acid Metabolism in Tumourigenesis: Beyond Providing Nutrition (Review). Molecular Medicine Reports, 18, 5307-5316. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Ventura, R., Mordec, K., Waszczuk, J., Wang, Z., Lai, J., Fridlib, M., Buckley, D., Kemble, G. and Heuer, T.S. (2015) Inhibition of de Novo Palmitate Synthesis by Fatty Acid Synthase Induces Apoptosis in Tumor Cells by Remodeling Cell Membranes, Inhibiting Signaling Pathways, and Re-programming Gene Expression. EBioMedicine, 2, 808-824. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Fhu, C.W. and Ali, A. (2020) Fatty Acid Synthase: An Emerging Target in Cancer. Molecules, 25, Article No. 3935. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Ladanyi, A., Mukherjee, A., Kenny, H.A., et al. (2018) Adipo-cyte-Induced CD36 Expression Drives Ovarian Cancer Progression and Metastasis. Oncogene, 37, 2285-2301. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Pan, J., Fan, Z., Wang, Z., Dai, Q., Xiang, Z., Yuan, F., Yan, M., Zhu, Z., Liu, B. and Li, C. (2019) CD36 Mediates Palmitate Acid-Induced Metastasis of Gastric Cancer via AKT/GSK-3β/β-Catenin Pathway. Journal of Experimental & Clinical Cancer Research, 38, Article No. 52. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Liang, Y., Han, H., Liu, L., et al. (2018) CD36 Plays a Critical Role in Proliferation, Migration and Tamoxifen-Inhibited Growth of ER-Positive Breast Cancer Cells. Oncogenesis, 7, Article No. 98. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Nath, A., Li, I., Roberts, L.R. and Chan, C. (2015) Elevated Free Fatty Acid Uptake via CD36 Promotes Epithelial-Mesenchymal Transition in Hepatocellular Carcinoma. Scientific Re-ports, 5, Article No. 14752. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Nath, A. and Chan, C. (2016) Genetic Alterations in Fatty Acid Transport and Metabolism Genes Are Associated with Metastatic Progression and Poor Prognosis of Human Cancers. Scientific Reports, 6, Article No. 18669. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Svegliati-Baroni, G., Pierantonelli, I., Torquato, P., Marinelli, R., Ferreri, C., Chatgilialoglu, C., Bartolini, D. and Galli, F. (2019) Lipidomic Biomarkers and Mechanisms of Lipotoxicity in Non-Alcoholic Fatty Liver Disease. Free Radical Biology & Medicine, 144, 293-309. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Zhu, A.X., Finn, R.S., Edeline, J., Cattan, S., Ogasawara, S., Palmer, D., Verslype, C., Zagonel, V., Fartoux, L., Vogel, A., Sarker, D., Verset, G., Chan, S.L., Knox, J., Daniele, B., Webber, A.L., Ebbinghaus, S.W., Ma, J., Siegel, A.B., Cheng, A.L., Kudo, M. and KEYNOTE-224 Investigators (2018) Pembrolizumab in Patients with Advanced Hepatocellular Carcinoma Previously Treated with Sorafenib (Key-note-224): A Non-Randomised, Open-Label Phase 2 Trial. The Lancet Oncology, 19, 940-952.
|
|
[18]
|
Giraud, J., Chalop-in, D., Blanc, J.F. and Saleh, M. (2021) Hepatocellular Carcinoma Immune Landscape and the Potential of Immunothera-pies. Frontiers in Immunology, 12, Article ID: 655697. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Bray, S.J. (2016) Notch Signalling in Context. Nature Reviews Molecular Cell Biology, 17, 722-735. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Li, S., Brown, M.S. and Goldstein, J.L. (2010) Bifurcation of Insulin Signaling Pathway in Rat Liver: mTORC1 Required for Stimulation of Lipogenesis, but Not Inhibition of Gluconeogene-sis. Proceedings of the National Academy of Sciences of the United States of America, 107, 3441-3446. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Talukdar, S., Oh, D.Y., Bandyopadhyay, G., et al. (2012) Neutro-phils Mediate Insulin Resistance in Mice Fed a High-Fat Diet through Secreted Elastase. Nature Medicine, 18, 1407-1412. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Miyachi, Y., Tsuchiya, K., Komiya, C., Shiba, K., Shimazu, N., Yamaguchi, S., Deushi, M., Osaka, M., Inoue, K., Sato, Y., Matsumoto, S., Kikuta, J., Wake, K., Yoshida, M., Ishii, M. and Ogawa, Y. (2017) Roles for Cell-Cell Adhesion and Contact in Obesity-Induced Hepatic Myeloid Cell Accumulation and Glu-cose Intolerance. Cell Reports, 18, 2766-2779. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Lee, U., Cho, E.Y. and Jho, E.H. (2022) Regulation of Hippo Signaling by Metabolic Pathways in Cancer. Biochimica et Biophysica Ac-ta—Molecular Cell Research, 1869, Article ID: 119201. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Aylon, Y., Gershoni, A., Rotkopf, R., Biton, I.E., Porat, Z., Koh, A.P., Sun, X., Lee, Y., Fiel, M.I., Hoshida, Y., Friedman, S.L., Johnson, R.L. and Oren, M. (2016) The LATS2 Tumor Suppressor Inhibits SREBP and Suppresses Hepatic Cholesterol Accumulation. Genes & Development, 30, 786-797. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Wang, X., Cai, B., Yang, X., Sonubi, O.O., Zheng, Z., Ra-makrishnan, R., Shi, H., Valenti, L., Pajvani, U.B., Sandhu, J., Infante, R.E., Radhakrishnan, A., Covey, D.F., Guan, K.L., Buck, J., Levin, L.R., Tontonoz, P., Schwabe, R.F. and Tabas, I. (2020) Cholesterol Stabilizes TAZ in Hepatocytes to Promote Experimental Non-Alcoholic Steatohepatitis. Cell Metabolism, 31, 969-986.e7. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Wei, H., Li, J., Shi, S., Zhang, L., Xiang, A., Shi, X., Yang, G. and Chu, G. (2019) Hhip Inhibits Proliferation and Promotes Differentiation of Adipocytes through Suppressing Hedgehog Signaling Pathway. Biochemical and Biophysical Research Communications, 514, 148-156. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Bagchi, D.P. and MacDougald, O.A. (2021) Wnt Signaling: From Mesenchymal Cell Fate to Lipogenesis and Other Mature Adipocyte Functions. Diabetes, 70, 1419-1430. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Anderson, C.M. and Macleod, K.F. (2019) Autophagy and Cancer Cell Metabolism. International Review of Cell and Molecular Biology, 347, 145-190. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Singh, R., Kaushik, S., Wang, Y., et al. (2009) Autophagy Reg-ulates Lipid Metabolism. Nature, 458, 1131-1135. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Tang, Q., Su, Z., Gu, W., et al. (2020) Mutant p53 on the Path to Metas-tasis. Trends in Cancer, 6, 62-73. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Zhang, C., Liu, J., Xu, D., et al. (2020) Gain-of-Function Mutant p53 in Cancer Progression and Therapy. Journal of Molecular Cell Biology, 12, 674-687. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Li, D. and Li, Y. (2020) The Interaction between Ferroptosis and Lipid Metabolism in Cancer. Signal Transduction and Targeted Therapy, 5, Article No. 108. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Bai, Y., Meng, L., Han, L., Jia, Y., Zhao, Y., Gao, H., Kang, R., Wang, X., Tang, D. and Dai, E. (2019) Lipid Storage and Lipophagy Regulates Ferroptosis. Biochemical and Biophysical Research Communications, 508, 997-1003. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Snaebjornsson, M.T., Janaki-Raman, S. and Schulze, A. (2020) Greasing the Wheels of the Cancer Machine: The Role of Lipid Metabolism in Cancer. Cell Metabolism, 31, 62-76. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Koundouros, N. and Poulogiannis, G. (2020) Reprogramming of Fatty Acid Metabolism in Cancer. British Journal of Cancer, 122, 4-22. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Pascual, G., Avgustinova, A., Mejetta, S., Martín, M., Castellanos, A., Attolini, C.S., Berenguer, A., Prats, N., Toll, A., Hueto, J.A., Bescós, C., Di Croce, L. and Benitah, S.A. (2017) Targeting Metastasis-Initiating Cells through the Fatty Acid Receptor CD36. Nature, 541, 41-45. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Holthuis, J.C. and Menon, A.K. (2014) Lipid Landscapes and Pipelines in Membrane Homeostasis. Nature, 510, 48-57. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Efeyan, A., Comb, W.C. and Sabatini, D.M. (2015) Nutrient-Sensing Mechanisms and Pathways. Nature, 517, 302-310. [Google Scholar] [CrossRef] [PubMed]
|