|
[1]
|
Holden, B.A., Fricke, T.R., Wilson, D.A., et al. (2016) Global Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050. Ophthalmology, 123, 1036-1042. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Pan, C.W., Dirani, M., Cheng, C.Y., et al. (2015) The Age-Specific Prevalence of Myopia in Asia: A Meta-Analysis. Optometry and Vision Science, 92, 258-266. [Google Scholar] [CrossRef]
|
|
[3]
|
Tham, Y.C., Aung, T., Fan, Q., et al. (2016) Joint Effects of Intraocular Pressure and Myopia on Risk of Primary Open-Angle Glaucoma: The Singapore Epidemiology of Eye Dis-eases Study. Scientific Reports, 6, Article No. 19320. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Frisina, R., Baldi, A., Cesana, B.M., et al. (2016) Morphological and Clin-ical Characteristics of Myopic Posterior Staphyloma in Caucasians. Graefe’s Archive for Clinical and Experimental Ophthalmology, 254, 2119-2129. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Hsia, Y. and Ho, T.C. (2020) Posterior Staphyloma of Extreme Pathologic Myopia. JAMA Ophthalmology, 138, e191663. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Morgan, I.G., Ohno-Matsui, K. and Saw, S.M. (2012) Myopia. The Lancet, 379, 1739-1748. [Google Scholar] [CrossRef]
|
|
[7]
|
Kim, T.G., Kim, W., Choi, S., et al. (2019) Effects of Scleral Collagen Crosslinking with Different Carbohydrate on Chemical Bond and Ultrastructure of Rabbit Sclera: Future Treat-ment for Myopia Progression. PLOS ONE, 14, e0216425. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Gladek, I., Ferdin, J., Horvat, S., et al. (2017) HIF1A Gene Polymorphisms and Human Diseases: Graphical Review of 97 Association Studies. Genes, Chromosomes and Cancer, 56, 439-452. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Masoud, G.N. and Li, W. (2015) HIF-1α Pathway: Role, Regulation and Intervention for Cancer Therapy. Acta Pharmaceutica Sinica B, 5, 378-389. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Zhao, F., Zhang, D., Zhou, Q., et al. (2020) Scleral HIF-1α Is a Prominent Regulatory Candidate for Genetic and Environmental Interactions in Human Myopia Pathogenesis. EBioMedi-cine, 57, Article ID: 102878. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Zhang, Y., Phan, E. and Wildsoet, C.F. (2019) Retinal Defocus and Form-Deprivation Exposure Duration Affects RPE BMP Gene Expression. Scientific Reports, 9, Article No. 7332. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Zhang, Y. and Wildsoet, C.F. (2015) RPE and Choroid Mecha-nisms Underlying Ocular Growth and Myopia. Progress in Molecular Biology and Translational Science, 134, 221-240. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Zhou, X., Pardue, M.T., Iuvone, P.M., et al. (2017) Dopamine Signaling and Myopia Development: What Are the Key Challenges. Progress in Retinal and Eye Research, 61, 60-71. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Reis, R.A., Ventura, A.L., Kubrusly, R.C., et al. (2007) Do-paminergic Signaling in the Developing Retina. Brain Research Reviews, 54, 181-188. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Spix, N.J., Liu, L.L., Zhang, Z., et al. (2016) Vulnerability of Dopaminergic Amacrine Cells to Chronic Ischemia in a Mouse Model of Oxygen-Induced Retinopathy. Investigative Ophthalmology & Visual Science, 57, 3047-3057. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Huang, F., Wang, Q., Yan, T., et al. (2020) The Role of the Dopamine D2 Receptor in Form-Deprivation Myopia in Mice: Studies with Full and Partial D2 Receptor Agonists and Knockouts. Investigative Ophthalmology & Visual Science, 61, Article No. 47. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Li, X., Zhang, Z., Zhang, X., et al. (2019) Transcriptomic Analysis of the Life-Extending Effect Exerted by Black Rice Antho-cyanin Extract in D. melanogaster through Regulation of Aging Pathways. Experimental Gerontology, 119, 33-39. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Ashok, A.H., Mizuno, Y., Volkow, N.D., et al. (2017) Associa-tion of Stimulant Use with Dopaminergic Alterations in Users of Cocaine, Amphetamine, or Methamphetamine: A Sys-tematic Review and Meta-Analysis. JAMA Psychiatry, 74, 511-519. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Jonas, J.B., Wang, Y.X., Dong, L., et al. (2020) Advances in Myopia Research Anatomical Findings in Highly Myopic Eyes. Eye and Vision (London), 7, Article No. 45. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Wu, Y., Ma, Y., Li, J., et al. (2021) The Bioinformatics and Metabolomics Research on Anti-Hypoxic Molecular Mechanisms of Salidroside via Regulating the PTEN Mediated PI3K/Akt/NF-κB Signaling Pathway. Chinese Journal of Natural Medicines, 19, 442-453. [Google Scholar] [CrossRef]
|
|
[21]
|
Zhong, X., Lin, R., Li, Z., et al. (2014) Effects of Salidroside on Cobalt Chloride-Induced Hypoxia Damage and mTOR Signaling Repression in PC12 Cells. Biological and Pharma-ceutical Bulletin, 37, 1199-1206. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Xu, M.C., Shi, H.M., Wang, H., et al. (2013) Salidroside Protects against Hydrogen Peroxide-Induced Injury in HUVECs via the Regulation of REDD1 and mTOR Activation. Molecular Medicine Reports, 8, 147-153. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Zhang, J., Liu, A., Hou, R., et al. (2009) Salidroside Protects Cardi-omyocyte against Hypoxia-Induced Death: A HIF-1alpha-Activated and VEGF-Mediated Pathway. European Journal of Pharmacology, 607, 6-14. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Li, Q.Y., Wang, H.M., Wang, Z.Q., et al. (2010) Salidroside At-tenuates Hypoxia-Induced Abnormal Processing of Amyloid Precursor Protein by Decreasing BACE1 Expression in SH-SY5Y Cells. Neuroscience Letters, 481, 154-158. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Qin, Y., Liu, H.J., Li, M., et al. (2018) Salidroside Improves the Hypoxic Tumor Microenvironment and Reverses the Drug Resistance of Platinum Drugs via HIF-1α Signaling Pathway. EBioMedicine, 38, 25-36. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Chen, X., Kou, Y., Lu, Y., et al. (2020) Salidroside Ameliorated Hypoxia-Induced Tumorigenesis of BxPC-3 Cells via Downregulating Hypoxia-Inducible Factor (HIF)-1α and LOXL2. Journal of Cellular Biochemistry, 121, 165-173. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Li, Y., Pham, V., Bui, M., et al. (2017) Rhodiola rosea L.: An Herb with Anti-Stress, Anti-Aging, and Immunostimulating Properties for Cancer Chemoprevention. Current Pharmacology Re-ports, 3, 384-395. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Zhao, J., Zhao, F., Ye, M., et al. (2020) Salidroside Attenuates Hypoxia-Induced Expression of Connexin 43 in Corpus Cavernosum Smooth Muscle Cells. Urologia Internationalis, 104, 594-603. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Wu, Y.L., Piao, D.M., Han, X.H., et al. (2008) Protective Effects of Salidroside against Acetaminophen-Induced Toxicity in Mice. Biological and Pharmaceutical Bulletin, 31, 1523-1529. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Liu, G. and He, L. (2019) Salidroside Attenuates Adriamy-cin-Induced Focal Segmental Glomerulosclerosis by Inhibiting the Hypoxia-Inducible Factor-1α Expression Through Phosphatidylinositol 3-Kinase/Protein Kinase B Pathway. Nephron, 142, 243-252. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Checa, J. and Aran, J.M. (2020) Reactive Oxygen Species: Drivers of Physiological and Pathological Processes. Journal of Inflammation Research, 13, 1057-1073. [Google Scholar] [CrossRef]
|
|
[32]
|
Guo, Q., Yang, J., Chen, Y., et al. (2020) Salidroside Improves Angio-genesis-Osteogenesis Coupling by Regulating the HIF-1α/VEGF Signalling Pathway in the Bone Environment. Europe-an Journal of Pharmacology, 884, Article ID: 173394. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Li, L., Qu, Y., Jin, X., et al. (2016) Protective Effect of Salidroside against Bone Loss via Hypoxia-Inducible Factor-1α Path-way-Induced Angiogenesis. Scientific Reports, 6, Article No. 32131. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Guo, X.Q., Qi, L., Yang, J., Wang, Y., Wang, C., Li, Z.M., Li, L., Qu, Y., Wang, D. and Han, Z.M. (2017) Salidroside Ac-celerates Fracture Healing through Cell-Autonomous and Non-Autonomous Effects on Osteoblasts. Cell and Tissue Re-search, 367, 197-211. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Xie, R.Y., Fang, X.L., Zheng, X.B., et al. (2019) Salidroside and FG-4592 Ameliorate High Glucose-Induced Glomerular Endothelial Cells Injury via HIF Upreg-ulation. Biomedicine & Pharmacotherapy, 118, Article ID: 109175. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Wei, Y., Hong, H., Zhang, X., et al. (2017) Salidroside Inhibits Inflammation through PI3K/Akt/HIF Signaling after Focal Cerebral Ischemia in Rats. Inflammation, 40, 1297-1309. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Metlapally, R. and Wildsoet, C.F. (2015) Scleral Mechanisms Underlying Ocular Growth and Myopia. Progress in Molecular Biology and Translational Science, 134, 241-248. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Wang, W.Y., Chen, C., Chang, J., et al. (2021) Pharmacothera-peutic Candidates for Myopia: A Review. Biomedicine & Pharmacotherapy, 133, Article ID: 111092. [Google Scholar] [CrossRef] [PubMed]
|