|
[1]
|
Heidelberger, C., Chaudhuri, N.K., Danneberg, D.P., et al. (1957) Fluorinated Pyrimidines, a New Class of Tumour-Inhibitory Compounds. Nature, 179, 663-666. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Cohen, S.S., Flaks, J.G., Barner, H.D., et al. (1958) The Mode of Action of 5-Fluorouracil and Its Derivatives. Biochemistry, 44, 1004-1012. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Parker, W.B. and Cheng, Y.C. (1990) Metabolism and Mechanism of Action of 5-Fluorouracil. Pharmacology & Therapeutics, 48, 381-395. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Hubner, R.A., Cubillo, A., Blanc, J.F., et al. (2019) Quality of Life in Metastatic Pancreatic Cancer Patients Receiving Liposomal Irinotecan plus 5-Fluorouracil and Leucovorin. European Journal of Cancer, 106, 24-33. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Van Cutsem, E., Moiseyenko, V.M., Tjulandin, S., et al. (2006) Phase III Study of Docetaxel and Cisplatin plus Fluorouracil Compared with Cisplatin and Fluorouracil as First-Line Therapy for Advanced Gastric Cancer: A Report of the V325 Study Group. Journal of Clinical Oncology, 24, 4991-4997. [Google Scholar] [CrossRef]
|
|
[6]
|
Chen, Y., Ye, J., Zhu, Z., et al. (2019) Comparing Paclitaxel plus Fluorouracil versus Cisplatin plus Fluorouracil in Chemoradiotherapy for Locally Advanced Esophageal Squamous Cell Cancer: A Randomized, Multicenter, Phase III Clinical Trial. Journal of Clinical Oncology, 37, 1695-1703. [Google Scholar] [CrossRef]
|
|
[7]
|
Vodenkova, S., Buchler, T., Cervena, K., et al. (2020) 5-Fluorouracil and Other Fluoropyrimidines in Colorectal Cancer: Past, Present and Future. Pharmacology & Therapeutics, 206, Article ID: 107447. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Lara-Sotelo, G., Díaz, L., García-Becerra, R., et al. (2021) α-Mangostin Synergizes the Antineoplastic Effects of 5-Fluorouracil Allowing a Significant Dose Reduction in Breast Cancer Cells. Processes, 9, 458. [Google Scholar] [CrossRef]
|
|
[9]
|
Koh, I., Nosaka, S., Sekine, M., et al. (2019) Regulation of REG4 Expression and Prediction of 5-Fluorouracil Sensitivity by CDX2 in Ovarian Mucinous Carcinoma. Cancer Genomics & Proteomics, 16, 481-490. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Zhang, Y., Zhu, S., Xu, X., et al. (2019) In Vitro Study of Combined Application of Bevacizumab and 5-Fluorouracil or Bevacizumab and Mitomycin C to Inhibit Scar Formation in Glaucoma Filtration Surgery. Journal of Ophthalmology, 2019, Article ID: 7419571. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
LaRanger, R., Karimpour-Fard, A., Costa, C., et al. (2019) Analysis of Keloid Response to 5-Fluorouracil Treatment and Long-Term Prevention of Keloid Recurrence. Plastic and Reconstructive Surgery, 143, 490-494. [Google Scholar] [CrossRef]
|
|
[12]
|
Rata, D.M., Cadinoiu, A.N., Atanase, L.I., et al. (2021) Topical Formulations Containing Aptamer-Functionalized Nanocapsules Loaded with 5-Fluorouracil—An Innovative Concept for the Skin Cancer Therapy. Materials Science and Engineering: C, 119, Article ID: 111591. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Deng, S. and Xia, H. (2020) Predictive Role of Plasma Fluorouracil Concentration Monitoring in Further Improving the Effects of Chemotherapy on Advanced Gastric Cancer and Relieving Adverse Reactions. Revista Argentina de Clínica Psicológica, 29, 896-900.
|
|
[14]
|
Kemeny, N.E., Chou, J.F., Capanu, M., et al. (2021) A Randomized Phase II Trial of Adjuvant Hepatic Arterial Infusion and Systemic Therapy with or without Panitumumab after Hepatic Resection of KRAS Wild-Type Colorectal Cancer. Annals of Surgery, 274, 248-254. [Google Scholar] [CrossRef]
|
|
[15]
|
Kemeny, N., Capanu, M., D’Angelica, M., et al. (2009) Phase I Trial of Adjuvant Hepatic Arterial Infusion (HAI) with Floxuridine (FUDR) and Dexamethasone plus Systemic Oxaliplatin, 5-Fluorouracil and Leucovorin in Patients with Resected Liver Metastases from Colorectal Cancer. Annals of Oncology, 20, 1236-1241. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Sebastian, N.T., Tan, Y., Miller, E.D., et al. (2019) Stereotactic Body Radiation Therapy Is Associated with Improved Overall Survival Compared to Chemoradiation or Radioembolization in the Treatment of Unresectable Intrahepatic Cholangiocarcinoma. Clinical and Translational Radiation Oncology, 19, 66-71. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Whittington, R., Neuberg, D., Tester, W.J., et al. (1995) Protracted Intravenous Fluorouracil Infusion with Radiation Therapy in the Management of Localized Pancreaticobiliary Carcinoma: A Phase I Eastern Cooperative Oncology Group Trial. Journal of Clinical Oncology, 13, 227-232. [Google Scholar] [CrossRef]
|
|
[18]
|
Hong, M., Chen, D., Hong, Z., et al. (2021) Ex Vivo and in Vivo Chemoprotective Activity and Potential Mechanism of Martynoside against 5-Fluorouracil-Induced Bone Marrow Cytotoxicity. Biomedicine & Pharmacotherapy, 138, Article ID: 111501. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Feliu, J., Garcia-Carbonero, R., Capdevila, J., et al. (2020) VITAL Phase 2 Study: Upfront 5-Fluorouracil, Mitomycin-C, Panitumumab and Radiotherapy Treatment in Nonmetastatic Squamous Cell Carcinomas of the Anal Canal (GEMCAD 09-02). Cancer Medicine, 9, 1008-1016. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Leon, O., Guren, M.G., Radu, C., et al. (2015) Phase I Study of Cetuximab in Combination with 5-Fluorouracil, Mitomycin C and Radiotherapy in Patients with Locally Advanced Anal Cancer. European Journal of Cancer, 51, 2740-2746. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Chakrabarti, S., Sara, J., Lobo, R., et al. (2019) Bolus 5-Fluorouracil (5-FU) in Combination with Oxaliplatin Is Safe and Well Tolerated in Patients Who Experienced Coronary Vasospasm with Infusional 5-FU or Capecitabine. Clinical Colorectal Cancer, 18, 52-57. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Deac, A.L., Burz, C.C., Bocsan, I.C., et al. (2020) Fluoropyrimidine-Induced Cardiotoxicity. World Journal of Clinical Oncology, 11, 1008-1017. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Ray, J., Mahmood, A., Dogar, M., et al. (2020) Simultaneous Cardiotoxicity and Neurotoxicity Associated with 5-Fluorouracil Containing Chemotherapy: A Case Report and Literature Review. American Journal of Medical Case Reports, 8, 73-75. [Google Scholar] [CrossRef]
|
|
[24]
|
Cascinu, S., Ficarelli, R., Safi, M.A., et al. (1997) A Phase I Study of Paclitaxel and 5-Fluorouracil in Advanced Gastric Cancer. European Journal of Cancer, 33, 1699-1702. [Google Scholar] [CrossRef]
|
|
[25]
|
Knikman, J.E., Gelderblom, H., Beijnen, J.H., et al. (2021) Individualized Dosing of Fluoropyrimidine-Based Chemotherapy to Prevent Severe Fluoropyrimidine-Related Toxicity: What Are the Options? Clinical Pharmacology & Therapeutics, 109, 591-604. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Deng, R., Shi, L., Zhu, W., et al. (2020) Pharmacokinetics-Based Dose Management of 5-Fluorouracil Clinical Research in Advanced Colorectal Cancer Treatment. Mini Reviews in Medicinal Chemistry, 20, 161-167. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Lee, Y. (2021) Roles of Circadian Clocks in Cancer Pathogenesis and Treatment. Experimental & Molecular Medicine, 53, 1529-1538. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Wigle, T.J., Tsvetkova, E.V., Welch, S.A., et al. (2019) DPYD and Fluorouracil-Based Chemotherapy: Mini Review and Case Report. Pharmaceutics, 11, 199. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Hill, R.J.W., Innominato, P.F., Levi, F., et al. (2020) Optimizing Circadian Drug Infusion Schedules towards Personalized Cancer Chronotherapy. PLOS Computational Biology, 16, e1007218. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Wormann, B., Bokemeyer, C., Burmeister, T., et al. (2020) Dihydropyrimidine Dehydrogenase Testing prior to Treatment with 5-Fluorouracil, Capecitabine, and Tegafur: A Consensus Paper. Oncology Research and Treatment, 43, 628-636. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Robin, T., Saint-Marcoux, F., Toinon, D., et al. (2020) Automatic Quantification of Uracil and Dihydrouracil in Plasma. Journal of Chromatography B, 1142, Article ID: 122038. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Marin, C., Krache, A., Palmaro, C., et al. (2020) A Simple and Rapid UPLC-UV Method for Detecting DPD Deficiency in Patients with Cancer. Clinical Translational Science, 13, 761-768. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Drami, I., Pring, E.T., Gould, L., et al. (2021) Body Composition and Dose-Limiting Toxicity in Colorectal Cancer Chemotherapy Treatment; a Systematic Review of the Literature. Could Muscle Mass Be the New Body Surface Area in Chemotherapy Dosing? Clinical Oncology, 33, e540-e552. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Misik, M., Filipic, M., Nersesyan, A., et al. (2019) Environmental Risk Assessment of Widely Used Anticancer Drugs (5-Fluorouracil, Cisplatin, Etoposide, Imatinib Mesylate). Water Research, 164, Article ID: 114953. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Russo, C., Graziani, V., Lavorgna, M., et al. (2019) Lymphocytes Exposed to Vegetables Grown in Waters Contaminated by Anticancer Drugs: Metabolome Alterations and Genotoxic Risks for Human Health. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 842, 125-131. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Hilliquin, D., Tanguay, C. and Bussieres, J.F. (2020) External Contamination of Commercial Containers by Antineoplastic Agents: A Literature Review. European Journal of Hospital Pharmacy, 27, 313-314. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Karedal, M., Jonsson, R., Wetterling, M., et al. (2022) A Quantitative LC-MS Method to Determine Surface Contamination of Antineoplastic Drugs by Wipe Sampling. Journal of Occupational and Environmental Hygiene, 19, 50-66. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Youssef, S.H., Afinjuomo, F., Song, Y., et al. (2021) Development of a Novel Chromatographic Method for Concurrent Determination of 5-Fluorouracil and Cisplatin: Validation, Greenness Evaluation, and Application on Drug-Eluting Film. Microchemical Journal, 168, Article ID: 106510. [Google Scholar] [CrossRef]
|
|
[39]
|
Afzali, M., Mostafavi, A. and Shamspur, T. (2020) A Novel Electrochemical Sensor Based on Magnetic core@shell Molecularly Imprinted Nanocomposite (Fe3O4@graphene oxide@MIP) for Sensitive and Selective Determination of Anticancer Drug Capecitabine. Arabian Journal of Chemistry, 13, 6626-6638. [Google Scholar] [CrossRef]
|
|
[40]
|
Tafzi, N., Woillard, J.-B., Fleytoux, A., et al. (2020) Phenotyping of Uracil and 5-Fluorouracil Metabolism Using LC-MS/MS for Prevention of Toxicity and Dose Adjustment of Fluoropyrimidines. Therapeutic Drug Monitoring, 42, 540-547. [Google Scholar] [CrossRef]
|
|
[41]
|
Gopinath, P., Veluswami, S., Thangarajan, R., et al. (2018) RP-HPLC-UV Method for Estimation of Fluorouracil-Epirubicin-Cyclophosphamide and Their Metabolite Mixtures in Human Plasma (Matrix). Journal of Chromatographic Science, 56, 488-497. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Zuvela, P., Skoczylas, M., Jay Liu, J., et al. (2019) Column Characterization and Selection Systems in Reversed-Phase High-Performance Liquid Chromatography. Chemical Reviews, 119, 3674-3729. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Semail, N.F., Noordin, S.S., Keyon, A.S.A., et al. (2021) A Simple and Efficient Sequential Electrokinetic and Hydrodynamic Injections in Micellar Electrokinetic Chromatography Method for Quantification of Anticancer Drug 5-Fluorouracil and Its Metabolite in Human Plasma. Biomedical Chromatography, 35, e5050. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Liu, H., Liu, Y., Zhou, T., et al. (2022) Ultrasensitive and Specific Detection of Anticancer Drug 5-Fluorouracil in Blood Samples by a Surface-Enhanced Raman Scattering (SERS)-Based Lateral Flow Immunochromatographic Assay. Molecules, 27, Article No. 4019. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Wang, J., Qu, X., Zhao, L., et al. (2021) Fabricating Nanosheets and Ratiometric Detection of 5-Fluorouracil by Covalent Organic Framework Hybrid Material. Analytical Chemistry, 93, 4308-4316. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Zahed, F.M., Hatamluyi, B., Lorestani, F., et al. (2018) Silver Nanoparticles Decorated Polyaniline Nanocomposite Based Electrochemical Sensor for the Determination of Anticancer Drug 5-Fluorouracil. Journal of Pharmaceutical and Biomedical Analysis, 161, 12-19. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Mariyappan, V., Keerthi, M., Chen, S.-M., et al. (2020) Facile Synthesis of α-Sm2S3/MoS2 Bimetallic Sulfide as a High-Performance Electrochemical Sensor for the Detection of Antineoplastic Drug 5-Fluorouracil in a Biological Samples. Journal of The Electrochemical Society, 167, Article ID: 117506. [Google Scholar] [CrossRef]
|
|
[48]
|
Vishnu, S.K.D., Ranganathan, P., Rwei, S.P., et al. (2020) New Reductant-Free Synthesis of Gold Nanoparticles- Doped Chitosan-Based Semi-IPN Nanogel: A Robust Nanoreactor for Exclusively Sensitive 5-Fluorouracil Sensor. International Journal of Biological Macromolecules, 148, 79-88. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Mutharani, B., Ranganathan, P. and Chen, S.-M. (2020) Temperature-Reversible Switched Antineoplastic Drug 5-Fluorouracil Electrochemical Sensor Based on Adaptable Thermo-Sensitive Microgel Encapsulated PEDOT. Sensors and Actuators B: Chemical, 304, Article ID: 127361. [Google Scholar] [CrossRef]
|
|
[50]
|
Ganesan, M., Ramadhass, K.D., Chuang, H.-C., et al. (2021) Synthesis of Nitrogen-Doped Carbon Quantum dots@Fe2O3/Multiwall Carbon Nanotubes Ternary Nanocomposite for the Simultaneous Electrochemical Detection of 5-Fluorouracil, Uric Acid, and Xanthine. Journal of Molecular Liquids, 331, Article ID: 115768. [Google Scholar] [CrossRef]
|
|
[51]
|
Roushani, M., Saeidi, Z., Hemati, S., et al. (2019) Highly Sensitive Electrochemical Determination of 5-Fluorouracil Using CuNPs/MWCNT/IL/Chit Composite Modified Glassy Carbon Electrode. Advances in Nanochemistry, 1, 73-77.
|
|
[52]
|
Hatamluyi, B., Sadeghian, R., Sany, S.B.T., et al. (2021) Dual-Signaling Electrochemical Ratiometric Strategy for Simultaneous Quantification of Anticancer Drugs. Talanta, 234, Article ID: 122662. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Hatamluyi, B., Es’haghi, Z., Modarres Zahed, F., et al. (2019) A Novel Electrochemical Sensor Based on GQDs- PANI/ZnO-NCs Modified Glassy Carbon Electrode for Simultaneous Determination of Irinotecan and 5-Fluorouracil in Biological Samples. Sensors and Actuators B: Chemical, 286, 540-549. [Google Scholar] [CrossRef]
|
|
[54]
|
Rahimi-Nasrabadi, M., Ahmadi, F., Beigizadeh, H., et al. (2020) A Modified Sensitive Carbon Paste Electrode for 5-Fluorouracil Based Using a Composite of Praseodymium Erbium Tungstate. Microchemical Journal, 154, Article ID: 104654. [Google Scholar] [CrossRef]
|
|
[55]
|
Emamian, R., Ebrahimi, M. and Karimi-Maleh, H. (2020) A Sensitive Sensor for Nano-Molar Detection of 5-Fluorouracil by Modifying a Paste Sensor with Graphene Quantum Dots and an Ionic Liquid. Journal of Nanostructures, 10, 230-238.
|
|
[56]
|
Hadi, M., Mollaei, T. and Ehsani, A. (2017) Graphene Oxides/Multi-Walled Carbon Nanotubes Hybrid-Modified Carbon Electrodes for Fast and Sensitive Voltammetric Determination of the Anticancer Drug 5-Fluorouracil in Spiked Human Plasma Samples. Chemical Papers, 72, 431-439. [Google Scholar] [CrossRef]
|