双调和非线性SchrÖdinger方程的低正则算法
Low-Regularity Integrator for the Biharmonic NLS Equation
DOI: 10.12677/AAM.2022.1111796, PDF, HTML,    国家自然科学基金支持
作者: 宁 翠:广东金融学院金融数学与统计学院,广东 广州
关键词: 双调和非线性Schro¨dinger方程低正则算法一阶收敛Biharmonic Nonlinear SchrÖdinger Equation Low-Regularity Integrator First Order Convergent
摘要: 本文研究了双调和非线性SchrÖdinger方程的具有一阶收敛的一种低正则算法, 得到的算法在损失三阶导数的前提下可以达到一阶收敛. 同时, 我们通过严格的误差分析, 证明了当初值属 于Hγ+3(Td)时, 双调和非线性SchrÖdinger方程在Hγ(Td)上具有一阶收敛, 其中
Abstract: In this paper, we introduce a first order low-regularity integrator for the biharmonic nonlinear SchrÖdinger equation. It only requires the boundedness of three additional derivatives of the solution to be the first order convergent. By rigorous error analysis, we show that the scheme provides first order accuracy in Hγ(Td) for rough initial data in Hγ+3(Td) with .
文章引用:宁翠. 双调和非线性SchrÖdinger方程的低正则算法[J]. 应用数学进展, 2022, 11(11): 7512-7523. https://doi.org/10.12677/AAM.2022.1111796

参考文献

[1] Zhu, S., Zhang, J. and Yang, H. (2010) Limiting Profile of the Blow-Up Solutions for the Fourth-Order Nonlinear Schro¨dinger Equation. Dynamics of Partial Differential Equations, 7, 187-205. [Google Scholar] [CrossRef
[2] Guo, Q. (2016) Scattering for the Focusing L2-Supercritical and H˙ 2-Subcritical Biharmonic NLS Equations. Communications in Partial Differential Equations, 41, 185-207. [Google Scholar] [CrossRef
[3] Li, Y., Wu, Y. and Xu, G. (2011) Global Well-Posedness for the Mass-Critical Nonlinear Schro¨dinger Equation on T. Journal of Differential Equations, 250, 2715-2736. [Google Scholar] [CrossRef
[4] Li, Y., Wu, Y. and Xu, G. (2011) Low Regularity Global Solutions for the Focusing Mass- Critical NLS in R. SIAM Journal on Mathematical Analysis, 43, 322-340. [Google Scholar] [CrossRef
[5] Wu, Y. (2013) Global Well-Posedness of the Derivative Nonlinear Schro¨dinger Equations in Energy Space. Analysis & PDE, 6, 1989-2002. [Google Scholar] [CrossRef
[6] Liu, X., Simpson, G. and Sulem, C. (2013) Stability of Solitary Waves for a Generalized Derivative Nonlinear Schro¨dinger Equation. Journal of Nonlinear Science, 23, 557-583. [Google Scholar] [CrossRef
[7] Wu, Y. (2015) Global Well-Posedness on the Derivative Nonlinear Schro¨dinger Equation. Anal- ysis & PDE, 8, 1101-1113. [Google Scholar] [CrossRef
[8] Ning, C., Ohta, M. and Wu, Y. (2017) Instability of Solitary Wave Solutions for Derivative Nonlinear Schro¨dinger Equation in Endpoint Case. Journal of Differential Equations, 262, 1671-1689. [Google Scholar] [CrossRef
[9] Le Coz, S. and Wu, Y. (2018) Stability of Multi-Solitons for the Derivative Nonlinear Schro¨dinger Equation. International Mathematics Research Notices, No. 13, 4120-4170. [Google Scholar] [CrossRef
[10] Ning, C. (2020) Instability of Solitary Wave Solutions for Derivative Nonlinear Schr¨odinger Equation in Borderline Case. Nonlinear Analysis, 192, Article ID: 111665. [Google Scholar] [CrossRef
[11] Feng, B. and Zhu, S. (2021) Stability and Instability of Standing Waves for the Fractional Nonlinear Schro¨dinger Equations. Journal of Differential Equations, 292, 287-324. [Google Scholar] [CrossRef
[12] Court`es, C., Lagouti`ere, F. and Rousset, F. (2020) Error Estimates of Finite Difference Schemes for the Korteweg-de Vries Equation. IMA Journal of Numerical Analysis, 40, 628-685. [Google Scholar] [CrossRef
[13] Holden, H., Koley, U. and Risebro, N. (2014) Convergence of a Fully Discrete Finite Difference Scheme for the Korteweg-de Vries Equation. IMA Journal of Numerical Analysis, 35, 1047- 1077. [Google Scholar] [CrossRef
[14] Aksan, E. and O¨ zde¸s, A. (2006) Numerical Solution of Korteweg-de Vries Equation by Galerkin B-Spline Finite Element Method. Applied Mathematics and Computation, 175, 1256-1265. [Google Scholar] [CrossRef
[15] Dutta, R., Koley, U. and Risebro, N.H. (2015) Convergence of a Higher Order Scheme for the Korteweg-de Vries Equation. SIAM Journal on Numerical Analysis, 53, 1963-1983. [Google Scholar] [CrossRef
[16] Holden, H., Karlsen, K.H., Risebro, N.H. and Tang, T. (2011) Operator Splitting for the KdV Equation. Mathematics of Computation, 80, 821-846. [Google Scholar] [CrossRef
[17] Holden, H., Lubich, C. and Risebro, N.H. (2012) Operator Splitting for Partial Differential Equations with Burgers Nonlinearity. Mathematics of Computation, 82, 173-185. [Google Scholar] [CrossRef
[18] Ma, H. and Sun, W. (2001) Optimal Error Estimates of the Legendre-Petrov-Galerkin Method for the Korteweg-de Vries Equation. SIAM Journal on Numerical Analysis, 39, 1380-1394. [Google Scholar] [CrossRef
[19] Shen, J. (2003) A New Dual-Petrov-Galerkin Method for Third and Higher Odd-Order Dif- ferential Equations: Application to the KdV Equation. SIAM Journal on Numerical Analysis, 41, 1595-1619. [Google Scholar] [CrossRef
[20] Yan, J. and Shu, C.W. (2002) A Local Discontinuous Galerkin Method for KdV Type Equa- tions. SIAM Journal on Numerical Analysis, 40, 769-791. [Google Scholar] [CrossRef
[21] Liu, H. and Yan, J. (2006) A Local Discontinuous Galerkin Method for the Kortewegde Vries Equation with Boundary Effect. Journal of Computational Physics, 215, 197-218. [Google Scholar] [CrossRef
[22] Hochbruck, M. and Ostermann, A. (2010) Exponential Integrators. Acta Numerica, 19, 209-286. [Google Scholar] [CrossRef
[23] Hofmanov´a, M. and Schratz, K. (2017) An Exponential-Type Integrator for the KdV Equation. Numerische Mathematik, 136, 1117-1137. [Google Scholar] [CrossRef
[24] Lubich, C. (2008) On Splitting Methods for Schro¨dinger-Poisson and Cubic Nonlinear Schro¨dinger Equations. Mathematics of Computation, 77, 2141-2153. [Google Scholar] [CrossRef
[25] Ostermann, A. and Schratz, K. (2018) Low Regularity Exponential-Type Integrators for Semi- linear Schr¨odinger Equations. Foundations of Computational Mathematics, 18, 731-755. [Google Scholar] [CrossRef
[26] Wu, Y. and Yao, F. (2022) A First-Order Fourier Integrator for the Nonlinear Schro¨dinger Equation on T without Loss of Regularity. Mathematics of Computation, 91, 1213-1235. [Google Scholar] [CrossRef
[27] Kato, T. and Ponce, G. (1988) Commutator Estimates and the Euler and Navier-Stokes E- quations. Communications on Pure and Applied Mathematics, 41, 891-907. [Google Scholar] [CrossRef