|
[1]
|
Neve, A., Corrado, A. and Cantatore, F.P. (2013) Osteocalcin: Skeletal and Extra-Skeletal Effects. Journal of Cellular Physiology, 228, 1149-1153. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Akiko, M., Tomoyo, K.-Y. and Masato, H. (2017) Osteocalcin and Its Endocrine Functions. Biochemical Pharmacology, 132, 1-8. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
苏静, 顾朋颖. 骨钙素与腹型肥胖关系的研究进展[J]. 中国临床保健杂志, 2017, 20(6): 765-768.
|
|
[4]
|
Otani, T., Mizokami, A., Kawakubo-Yasukochi, T., Takeuchi, H., Inai, T. and Hirata, M. (2020) The Roles of Osteocalcin in Lipid Metabolism in Adipose Tissue and Liver. Advances in Biological Regulation, 78, Article ID: 100752. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Yasutake, Y., Mizokami, A., Kawakubo-Yasukochi, T., Chishaki, S., Takahashi, I., Takeuchi, H. and Hirata, M. (2016) Long-Term Oral Administration of Osteocalcin Induces Insulin Re-sistance in Male Mice Fed a High-Fat, High-Sucrose Diet. American Journal of Physiology-Endocrinology and Metabo-lism, 310, E662-E675. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Rueda, P., Harley, E., Lu, Y., et al. (2016) Murine GPRC6A Mediates Cellular Responses to L-amino Acids, But Not Osteocalcin Variants . PLOS ONE, 11, e0146846. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
孙婷婷, 王凯. 骨代谢相关因子参与动脉粥样硬化的研究进展[J]. 上海医学, 2022, 45(2): 125-129. [Google Scholar] [CrossRef]
|
|
[8]
|
Xu, Y., Wang, Y., Ma, X., Xiao, Y., Wang, Y. and Bao, Y. (2020) The Mediating Role of the Visceral Fat Area in the Correlation between the Serum Osteocalcin Levels and a Prolonged QTc Interval. Cytokine, 136, Article ID: 155261. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Levinger, I., Brennan-Speranza, T.C., Zulli, A., Parker, L., Lin, X., Lewis, J.R. and Yeap, B.B. (2017) Multifaceted Interaction of Bone, Muscle, Life Style Interventions and Metabolic and Cardiovascular Disease: Role of Osteocalcin. Osteoporosis International, 28, 2265-2273. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Tacey, A., Hayes, A., Zulli, A. and Levinger, I. (2021) Osteocal-cin and Vascular Function: Is There a Cross-Talk? Molecular Metabolism, 49, Article ID: 101205. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Liu, X., Liu, Y., Mathers, J., Cameron, M., Levinger, I., Yeap, B.B., Lewis, J.R., Brock, K.E. and Brennan-Speranza, T.C. (2020) Osteocalcin and Measures of Adiposity: A Systematic Review and Meta-Analysis of Observational Studies. Archives of Osteoporosis, 15, Article No. 145. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Kord-Varkaneh, H., Djafarian, K., Khorshidi, M. and Shab-Bidar, S. (2017) Association between Serum Osteocalcin and Body Mass Index: A Systematic Review and Meta-Analysis. En-docrine, 58, 24-32. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Wu, X.L., Zou, X.Y., Zhang, M., Hu, H.Q., Wei, X.L., Jin, M.L., Cheng, H.W. and Jiang, S. (2021) Osteocalcin Prevents Insulin Resistance, Hepatic Inflammation, and Activates Au-tophagy Associated with High-Fat Diet-Induced Fatty Liver Hemorrhagic Syndrome in Aged Laying Hens. Poultry Sci-ence, 100, 73-83. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Zeng, H., Ge, J., Xu, W., Ma, H., Chen, L., Xia, M., Pan, B., Lin, H., Wang, S. and Gao, X. (2021) Type 2 Diabetes Is Causally Associated with Reduced Serum Osteocalcin: A Ge-nomewide Association and Mendelian Randomization Study. Journal of Bone and Mineral Research, 36, 1694-1707. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Knapen, M.H.J., Jardon, K.M. and Vermeer, C. (2018) Vitamin K-Induced Effects on Body Fat and Weight: Results from a 3-Year Vitamin K2 Intervention Study. European Journal of Clinical Nutrition, 72, 136-141. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Kapoor, K., Pi, M., Nishimoto, S.K., Quarles, L.D., Baudry, J. and Smith, J.C. (2021) The Carboxylation Status of Osteocalcin Has Important Consequences for Its Structure and Dynamics. Biochimica et Biophysica Acta—General Subjects, 1865, Article ID: 129809. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Otani, T., Matsuda, M., Mizokami, A., Kitagawa, N., Takeuchi, H., Jimi, E., Inai, T. and Hirata, M. (2018) Osteocalcin Triggers Fas/FasL-Mediated Necroptosis in Adipocytes via Acti-vation of p300. Cell Death & Disease, 9, Article No. 1194. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Huang, L., Yang, L., Luo, L., Wu, P. and Yan, S. (2017) Osteocalcin Improves Metabolic Profiles, Body Composition and Arte-rial Stiffening in an Induced Diabetic Rat Model. Experimental and Clinical Endocrinology & Diabetes, 125, 234-240. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Kanazawa, I. (2015) Osteocalcin as a Hormone Regulating Glucose Metabolism. World Journal of Diabetes, 6, 1345- 1354. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Campos, R.M.D.S., Masquio, D.C.L., Corgosinho, F., Carvalho-Ferreira, J.P., Molin Netto, B.D., Clemente, A.P.G., Tock, L., Tufik, S., Mello, M.T. and Dâmaso, A.R. (2018) Relationship between Adiponectin and Leptin on Osteocalcin in Obese Adolescents during Weight Loss Therapy. Archives of Endocrinology and Metabolism, 62, 275-284. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Ducy, P., Amling, M., Takeda, S., et al. (2000) Leptin Inhibits Bone Formation through a Hypothalamic Relay: A Central Control of Bonemass. Cell, 100, 197-207. [Google Scholar] [CrossRef]
|
|
[22]
|
Lee, N.K., Sowa, H., Hinoi, E., et al. (2007) Endocrine Reg-ulation of Energy Metabolism by the Skeleton. Cell, 130, 456-469. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Ferron, M., McKee, M.D., Levine, R.L., Ducy, P. and Karsenty, G. (2012) Intermittent Injections of Osteocalcin Improve Glucose Metabolism and Prevent Type 2 Diabetes in Mice. Bone, 50, 568-575. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Ferron, M., Hinoi, E., Karsenty, G. and Ducy, P. (2008) Osteocal-cin Differentially Regulates Beta Cell and Adipocyte Gene Expression and Affects the Development of Metabolic Dis-eases in Wild-Type Mice. Proceedings of the National Academy of Sciences of the United States of America, 105, 5266-5270. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Dirckx, N., Moorer, M.C., Clemens, T.L., et al. (2019) The Role of Osteoblasts in Energy Homeostasis. Nature Reviews Endocrinology, 15, 651-665. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Shea, M.K., Booth, S.L., Gundberg, C.M., Peterson, J.W., Waddell, C., Dawson-Hughes, B. and Saltzman, E. (2010) Adulthood Obesity Is Positively Associated with Adipose Tissue Concentrations of Vitamin K and Inversely Associated with Circulating Indicators of Vitamin K Status in Men and Women. The Journal of Nutrition, 140, 1029-1034. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Oldenburg, J., Marinova, M., Müller-Reible, C. and Watzka, M. (2008) The Vitamin K Cycle. Vitamins and Hormones, 78, 35-62. [Google Scholar] [CrossRef]
|
|
[28]
|
Ding, Y., Cui, J., Wang, Q., Shen, S., Xu, T., Tang, H., Han, M. and Wu, X. (2018) The Vitamin K Epoxide Reductase Vkorc1l1 Promotes Preadipocyte Differentiation in Mice. Obesity (Silver Spring), 26, 1303-1311. [Google Scholar] [CrossRef] [PubMed]
|