|
[1]
|
Iulian, A., Dan, L., Camelia, T., Claudia, M. and Sebastian, G. (2018) Synthetic Materials for Osteochondral Tissue En-gineering. Advances in Experimental Medicine and Biology, 1058, 31-52. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Chen, H., Sun, T., Yan, Y.F., et al. (2020) Cartilage Ma-trix-Inspired Biomimetic Superlubricated Nanospheres for Treatment of Osteoarthritis. Biomaterials, 242, Article ID: 119931. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Ebert, J.R., Fallon, M., Smith, A., Janes, G.C. and Wood, D.J. (2015) Prospective Clinical and Radiologic Evaluation of Patellofemoral Matrix-Induced Autologous Chon-drocyte Implantation. American Journal of Sports Medicine, 43, 1362-1372. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
代岭辉. 膝关节软骨损伤修复重建指南(2021) [J]. 中国运动医学杂志, 2022, 41(4): 249-259.
|
|
[5]
|
Roseti, L., Desando, G., Cavallo, C., Petretta, M. and Grigolo, B. (2019) Articu-lar Cartilage Regeneration in Osteoarthritis. Cells, 8, Article No. 1305. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Boyle, K.K., Kapadia, M., Landy, D.C., Henry, M.W., Miller, A.O. and Westrich, G.H. (2020) Utilization of Debridement, Antibiotics, and Implant Retention for Infection after Total Joint Ar-throplasty over a Decade in the United States. The Journal of Arthroplasty, 35, 2210-2216. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Grottkau, B.E. and Lin, Y. (2013) Osteogenesis of Adi-pose-Derived Stem Cells. Bone Research, 1, 133-145. [Google Scholar] [CrossRef]
|
|
[8]
|
Ji, W.C., Zhang, X.W. and Qiu, Y.S. (2016) Selected Suitable Seed Cell, Scaffold and Growth Factor Could Maximize the Repair Effect Using Tissue Engineering Method in Spinal Cord Injury. World Journal of Experimental Medicine, 6, 58-62. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Zuk, P.A., Zhu, M., Ashjian, P., et al. (2002) Human Adipose Tissue Is a Source of Multipotent Stem Cells. Molecular Biology of the Cell, 13, 4279-4295. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Bacakova, L., Zarubova, J., Travnickova, M., Musilkova, J., Pajorova, J., Slepicka, P., Kasalkova, N.S., Svorcik, V., Kolska, Z., Motarjemi, H. and Molitor, M. (2018) Stem Cells: Their Source, Potency and Use in Regenerative Therapies with Focus on Adipose-Derived stem Cells—A Review. Biotechnology Advances, 36, 1111-1126. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Zuk, P.A., Zhu, M., Mizuno, H., et al. (2001) Multilineage Cells from Human Adipose Tissue: Implications for Cell- Based Therapies. Tissue Engineering, 7, 211-228. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
赵晨. 脂肪干细胞来源外泌体对膝骨关节炎的疗效及作用机制的研究[D]: [博士学位论文]. 苏州: 苏州大学, 2020.
|
|
[13]
|
Wu, J., Kuang, L., Chen, C., et al. (2019) miR-100-5p-Abundant Exosomes Derived from Infrapatellar Fat Pad MSCs Protect Articular Cartilage and Ameliorate Gait Abnormalities via Inhibition of mTOR in Osteoarthritis. Biomaterials, 206, 87-100. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Desai, V.D., Hsia, H.C. and Schwarzbauer, J.E. (2014) Reversible Modulation of Myofibroblast Differentiation in Adipose-Derived Mesenchymal Stem Cells. PLOS ONE, 9, e86865. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Charbord, P. (2010) Bone Marrow Mesenchymal Stem Cells: Historical Overview and Concepts. Human Gene Therapy, 21, 1045-1056. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Park, M.S., Kim, Y.H., Jung, Y., Kim, S.H., Park, J.C., Yoon, D.S., Kim, S.H. and Lee, J.W. (2015) In Situ Recruitment of Human Bone Marrow-Derived Mesenchymal Stem Cells Using Chemokines for Articular Cartilage Regeneration. Cell Transplantation, 24, 1067-1083. [Google Scholar] [CrossRef]
|
|
[17]
|
Huang, X., Chen, Z., Zhao, G., Shi, J., Huang, G., Chen, F., Wei, Y., Xia, J., Chen, J. and Wang, S. (2020) Combined Culture Experiment of Mouse Bone Marrow Mesenchymal Stem Cells and Bioceramic Scaffolds. Experimental and Therapeutic Medicine, 20, Article No. 19. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Mueller, M.B., Fischer, M., Zellner, J., Berner, A., Dienstknecht, T., Prantl, L., Kujat, R., Nerlich, M., Tuan, R.S. and Angele, P. (2010) Hypertrophy in Mesenchymal Stem Cell Chondro-genesis: Effect of TGF-beta Isoforms and Chondrogenic Conditioning. Cells Tissues Organs, 192, 158-166. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Zhang, L., He, A., Yin, Z., Yu, Z., Luo, X., Liu, W., Zhang, W., Cao, Y., et al. (2014) Regeneration of Human-Ear- Shaped Cartilage by Co-Culturing Human Microtia Chondrocytes with BMSCs. Biomaterials, 35, 4878-4887. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Correa, D., Somoza, R.A., Lin, P., Greenberg, S., Rom, E., Duesler, L., Welter, J.F., Yayon, A. and Caplan, A.I. (2015) Sequential Exposure to Fibroblast Growth Factors (FGF) 2, 9 and 18 Enhances hMSC Chondrogenic Differentiation. Osteoarthritis and Cartilage, 23, 443-453. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Peng, X.B., Zhang, Y., Wang, Y.Q., He, Q. and Yu, Q. (2019) IGF-1 and BMP-7 Synergistically Stimulate Articular Cartilage Repairing in the Rabbit Knees by Improving Chondro-genic Differentiation of Bone-Marrow Mesenchymal Stem Cells. Journal of Cellular Physiology, 120, 5570-5582. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Xe, J., He, A., Zhu, Y., Liu, Y., Li, D., Yin, Z., Zhang, W., Liu, W., Cao, Y. and Zhou, G. (2018) Repair of Articular Cartilage Defects with Acellular Cartilage Sheets in a Swine Model. Biomedical Materials, 13, Article ID: 025016. [Google Scholar] [CrossRef]
|
|
[23]
|
Kozhemyakina, E., Zhang, M., Ionescu, A., Ayturk, U.M., Ono, N., Kobayashi, A., Kronenberg, H., Warman, M.L. and Lassar, A.B. (2015) Identification of a Prg4-Expressing Articular Cartilage Progenitor Cell Population in Mice. Arthritis & Rheumatology, 67, 1261-1273. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Fellows, C.R., Williams, R., Davies, I.R., Gohil, K., Baird, D.M., Fairclough, J., Rooney, P., Archer, C.W. and Khan, I.M. (2017) Characterisation of a Divergent Progenitor Cell Sub-Populations in Human Osteoarthritic Cartilage: The Role of Telomere Erosion and Replicative Senescence. Scientific Reports, 7, Article No. 41421. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Melgarejo-Ramírez, Y., Sánchez-Sánchez, R., García-López, J., Bre-na-Molina, A.M., Gutiérrez-Gómez, C., Ibarra, C. and Velasquillo, C. (2016) Characterization of Pediatric Microtia Car-tilage: A Reservoir of Chondrocytes for Auricular Reconstruction Using Tissue Engineering Strategies.Cell and Tissue Banking, 17, 481-489. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Chang, H. and Knothe Tate, M.L. (2012) Concise Review: The Periosteum: Tapping into a Reservoir of Clinically Useful Progenitor Cells. Stem Cells Translational Medicine, 1, 480-491. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Uccelli, A., Moretta, L. and Pistoia, V. (2008) Mesenchymal Stem Cells in Health and Disease. Nature Reviews Immunology, 8, 726-736. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
林茜茜, 张龙, 袁桂鑫, 吴佐星, 冯昊天, 李娜, 许韧. 骨骼干细胞的研究进展[J]. 厦门大学学报(自然科学版), 2022, 61(3): 429-435.
|
|
[29]
|
Gjerde, C., Mustafa, K., Hellem, S., Rojewski, M., Gjengedal, H., Yassin, M.A., Feng, X., Skaale, S., Berge, T., Rosen, A., Shi, X.Q., Ahmed, A.B., Gjertsen, B.T., Schrezenmeier, H. and Layrolle, P. (2018) Cell Therapy Induced Regeneration of Severely Atrophied Mandibular Bone in a Clinical Trial. Stem Cell Research & Thera-py, 9, Article No. 213. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Chan, C.K.F., Gulati, G.S., Sinha, R., Tompkins, J.V., Lopez, M., Carter, A.C., et al. (2018) Identification of the Human Skeletal Stem Cell. Cell, 175, 43-56.e21. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
陈超, 亓建洪, 陈彬. 人脐带间充质干细胞在软骨组织工程中的应用[J]. 中国医学工程, 2015, 23(1): 203-204.
|
|
[32]
|
汪兆艳, 杨印祥, 王倩, 王彩英, 屈素清, 金慧玉, 栾佐. 人脐带源间充质干细胞体外成脂、成骨、成软骨诱导分化[J]. 转化医学杂志, 2013, 2(6): 329-331+335.
|
|
[33]
|
张权, 陈恋, 常铖, 张亚奇, 肖翠红, 饶巍, 韩兵, 武栋成. 两种不同的体外诱导人脐带间充质干细胞成软骨细胞方法的比较[J]. 中国细胞生物学学报, 2019, 41(10): 1967-1975.
|
|
[34]
|
Oldershaw, R.A., Baxter, M.A., Lowe, E.T., Bates, N., Grady, L.M., Soncin, F., Brison, D.R., Hardingham, T.E. and Kimber, S.J. (2010) Directed Differentiation of Human Embryonic Stem Cells toward Chondrocytes. Nature Biotechnology, 28, 1187-1194. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
McKee, C., Hong, Y., Yao, D. and Chaudhry, G.R. (2017) Compression In-duced Chondrogenic Differentiation of Embryonic Stem Cells in Three-Dimensional Polydimethylsiloxane Scaffolds. Tissue Engineering, Part A, 23, 426-435. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Yan, L.P., Silva-Correia, J., Oliveira, M.B., Vilela, C., Pereira, H., Sousa, R.A., Mano, J.F., Oliveira, A.L., Oliveira, J.M. and Reis, R.L. (2015) Bilayered Silk/Silk-nanoCaP Scaffolds for Osteochondral Tissue Engineering: In Vitro and in Vivo Assessment of Biological Performance. Acta Biomaterialia, 12, 227-241. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Yu, L., Huang, J., et al. (2015) Antler Collagen/Chitosan Scaf-folds Improve Critical Calvarial Defect Healing in Rats. Journal of Biomaterials and Tissue Engineering, 5, 774-779. [Google Scholar] [CrossRef]
|
|
[38]
|
Nehrer, S., Breinan, H.A., Ramappa, A., Shortkroff, S., Young, G., Minas, T., Sledge, C.B., Yannas, I.V. and Spector, M. (1997) Canine Chondrocytes Seeded in Type I and Type II Colla-gen Implants Investigated in Vitro. Journal of Biomedical Materials Research, 38, 95-104. [Google Scholar] [CrossRef]
|
|
[39]
|
Shariatinia, Z. (2018) Carboxymethyl Chitosan: Properties and Biomedical Applications. International Journal of Biological Macromolecules, 120, 1406-1419. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Venkatesan, J., Bhatnagar, I. and Kim, S.K. (2014) Chitosan-Alginate Biocomposite Containing Fucoidan for Bone Tissue Engineering. Marine Drugs, 12, 300-316. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Chameettachal, S., Murab, S., Vaid, R., Midha, S. and Ghosh, S. (2017) Effect of Visco-Elastic Silk-Chitosan Microcomposite Scaffolds on Matrix Deposition and Biomechanical Functionality for Cartilage Tissue Engineering. Journal of Tissue Engineering and Regenerative Medicine, 11, 1212-1229. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Boukari, Y., Qutachi, O., Scurr, D.J., Morris, A.P., Doughty, S.W. and Billa, N. (2017) A Dual-Application Poly(dl- lactic-co-glycolic) Acid (PLGA)-Chitosan Composite Scaffold for Potential Use in Bone Tissue Engineering. Journal of Biomaterials Science, Polymer Edition, 28, 1966-1983. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Feng, W.P., et al. (2015) Preparation and Characterization of Collagen-Hydroxyapatite/Pectin Composite. International Journal of Biological Macromolecules, 74, 218-223. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Kim, I.L., Mauck, R.L. and Burdick, J.A. (2011) Hydrogel Design for Cartilage Tissue Engineering: A Case Study with Hyaluronic Acid. Biomaterials, 32, 8771-8782. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
魏健, 刘建建, 黄思玲, 李漫, 李霞, 郭学平. 透明质酸交联衍生物的研究进展[J]. 高分子材料科学与工程, 2017, 33(10): 183-190.
|
|
[46]
|
Bidarra, S.J., Barrias, C.C. and Granja, P.L. (2014) Injectable Alginate Hydrogels for Cell Delivery in Tissue Engineering. Acta Biomaterialia, 10, 1646-1662. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Catanzano, O., Soriente, A., La Gatta, A., Cammarota, M., Ricci, G., Fasolino, I., Schiraldi, C., Ambrosio, L., Malinconico, M., Laurienzo, P., Raucci, M.G. and Gomez d’Ayala, G. (2018) Macroporous Alginate Foams Crosslinked with Strontium for Bone Tissue Engineering. Carbohy-drate Polymers, 202, 72-83. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
孙磊, 张柏青, 陈磊, 陶剑锋, 江健, 孟国林, 窦榆生, 徐建强, 刘丹平, 胡蕴玉. 海藻酸钠凝胶复合异种骨构建组织工程骨及体内成骨[J]. 中国修复重建外科杂志, 2008, 22(6): 732-736.
|
|
[49]
|
Mahapatra, C., Jin, G.Z. and Kim, H.W. (2016) Alginate-Hyaluronic Acid-Collagen Composite Hydrogel Favorable for the Culture of Chondrocytes and Their Phenotype Maintenance. Tissue Engineering and Regenerative Medicine, 13, 538-546. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Ramesh, N., Moratti, S.C. and Dias, G.J. (2018) Hydroxyapatite-Polymer Biocomposites for Bone Regeneration: A Review of Current Trends. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 106, 2046-2057. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Yu, L., Rowe, D.W., Perera, I.P., Zhang, J., Suib, S.L., Xin, X. and Wei, M. (2020) Intrafibrillar Mineralized Collagen-Hydroxyapatite-Based Scaffolds for Bone Regeneration. ACS Applied Ma-terials and Interfaces, 12, 18235-18249. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Shakir, M., Zia, I., Rehman, A. and Ullah, R. (2018) Fabrication and Characterization of Nanoengineered Biocompatible n-HA/Chitosan-Tamarind Seed Polysaccharide: Bio-Inspired Nano-composites for Bone Tissue Engineering. International Journal of Biological Macromolecules, 111, 903-916. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
de Freitas Silva, L., de Carvalho Reis, E.N.R., Barbara, T.A., Bonardi, J.P., Garcia, I.R., de Carvalho, P.S.P. and Ponzoni, D. (2017) Assessment of Bone Repair in Critical-Size De-fect in the Calvarium of Rats after the Implantation of Tricalcium Phosphate Beta (β-TCP). Acta Histochemica, 119, 624-631. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Shim, J.H., Moon, T.S., Yun, M.J., Jeon, Y.C., Jeong, C.M., Cho, D.W. and Huh, J.B. (2012) Stimulation of Healing within a Rabbit Calvarial Defect by a PCL/PLGA Scaf-fold Blended with TCP Using Solid Freeform Fabrication Technology. Journal of Materials Science: Materials in Medi-cine, 23, 2993-3002. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Terranova, L., Dragusin, D.M., Mallet, R., Vasile, E., Stancu, I.C., Behets, C. and Chappard, D. (2017) Repair of Calvarial Bone Defects in Mice Using Electrospun Polystyrene Scaffolds Combined with β-TCP or Gold Nanoparticles. Micron, 93, 29-37. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Yao, Q., Wei, B., Liu, N., Li, C., Guo, Y., Shamie, A.N., Chen, J., Tang, C., Jin, C., Xu, Y., Bian, X., Zhang, X. and Wang, L. (2015) Chondrogenic Regeneration Using Bone Marrow Clots and a Porous Polycaprolactone-Hydroxy-apatite Scaffold by Three-Dimensional Printing. Tissue Engineering, Part A, 21, 1388-1397. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Zhou, X., Shi, G., Fan, B., Cheng, X., Zhang, X., Wang, X., Liu, S., Hao, Y., Wei, Z., Wang, L. and Feng, S. (2018) Polycaprolactone Electrospun Fiber Scaffold Loaded with iPSCs-NSCs and ASCs as a Novel Tissue Engineering Scaffold for the Treatment of Spinal Cord Injury. International Journal of Na-nomedicine, 13, 6265-6277. [Google Scholar] [CrossRef]
|
|
[58]
|
崔玉明, 伍骥, 胡蕴玉. 聚乳酸/聚羟基乙酸复合骨形成蛋白修复兔关节软骨缺损[J]. 中国修复重建外科杂志, 2007, 21(11): 1233-1237.
|
|
[59]
|
Kong, X.-B., Tang, Q.-Y., Chen, X.-Y., Tu, Y., Sun, S.-Z. and Sun, Z.-L. (2017) Polyethylene Glycol as a Promising Synthetic Material for Repair of Spinal Cord Injury. Neural Regeneration Research, 12, 1003-1008. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Wang, J., Yang, Q., Cheng, N., Tao, X., Zhang, Z., Sun, X. and Zhang, Q. (2016) Collagen/Silk Fibroin Composite Scaffold Incorporated with PLGA Microsphere for Cartilage Repair. Materials Science & Engineering C—Materials for Biological Applications, 61, 705-711. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Jiang, J., Tang, A., Ateshian, G.A., Guo, X.E., Hung, C.T. and Lu, H.H. (2010) Bioactive Stratified Polymer Ceramic-Hydrogel Scaffold for Integrative Osteochondral Repair. Annals of Biomedical Engineering, 38, 2183-2196. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Chiu, Y.C., Fang, H.Y., Hsu, T.T., Lin, C.Y. and Shie, M.Y. (2017) The Characteristics of Mineral Trioxide Aggregate/Polycaprolactone 3-Dimensional Scaffold with Osteogenesis Properties for Tissue Regeneration. Journal of Endodontics, 43, 923-929. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Wang, C., Zhao, Q. and Wang, M. (2017) Cryogenic 3D Printing for Producing Hierarchical Porous and rhBMP-2- Loaded Ca-P/PLLA Nanocomposite Scaffolds for Bone Tissue Engi-neering. Biofabrication, 9, Article ID: 025031. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Liu, X., Rahaman, M.N., Liu, Y., Bal, B.S. and Bonewald, L.F. (2013) Enhanced Bone Regeneration in Rat Calvarial Defects Implanted with Surface-Modified and BMP-Loaded Bioac-tive Glass (13-93) Scaffolds. Acta Biomaterialia, 9, 7506-7517. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Azizian, S., Hadjizadeh, A. and Niknejad, H. (2018) Chi-tosan-Gelatin Porous Scaffold Incorporated with Chitosan Nanoparticles for Growth Factor Delivery in Tissue Engi-neering. Carbohydrate Polymers, 202, 315-322. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Kuttappan, S., Mathew, D., Jo, J.I., Tanaka, R., Menon, D., Ishimoto, T., Nakano, T., Nair, S.V., Nair, M.B. and Tabata, Y. (2018) Dual Release of Growth Factor from Nanocom-posite Fibrous Scaffold Promotes Vascularisation and Bone Regeneration in Rat Critical Sized Calvarial Defect. Acta Biomaterialia, 78, 36-47. [Google Scholar] [CrossRef] [PubMed]
|