|
[1]
|
Dai, D.F., Chen, T., Johnson, S.C., Szeto, H. and Rabinovitch, P.S. (2012) Cardiac Aging: From Molecular Mechanisms to Significance in Human Health and Disease. Antioxidants & Redox Signaling, 16, 1492-1526. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Sangaralingham, S.J., Wang, B.H., Huang, L., et al. (2016) Cardiorenal Fibrosis and Dysfunction in Aging: Imbalance in Mediators and Regulators of Collagen. Peptides, 76, 108-114. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Frangogiannis, N.G. (2019) The Extracellular Matrix in Is-chemic and Nonischemic Heart Failure. Circulation Research, 125, 117-146. [Google Scholar] [CrossRef]
|
|
[4]
|
Maruyama, K. and Imanaka-Yoshida, K. (2022) The Pathogenesis of Cardiac Fibrosis: A Review of Recent Progress. International Journal of Molecular Sciences, 23, Article No. 2617. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
de Boer, R.A., De Keulenaer, G., Bauersachs, J., et al. (2019) Towards Better Definition, Quantification and Treatment of Fibrosis in Heart Failure. A Scientific Roadmap by the Committee of Translational Research of the Heart Failure Association (HFA) of the European Society of Cardiology. European Journal of Heart Failure, 21, 272-285. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
高小燕, 邓春玉, 饶芳, 等. 衰老与心肌纤维化[J]. 医学综述, 2018, 24(24): 4785-4789.
|
|
[7]
|
Tang, X., Li, P.H. and Chen, H.Z. (2020) Cardiomyocyte Senescence and Cellular Communi-cations within Myocardial Microenvironments. Frontiers in Endocrinology, 11, Article 280. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Achkar, A., Saliba, Y. and Fares, N. (2020) Differential Gen-der-Dependent Patterns of Cardiac Fibrosis and Fibroblast Phenotypes in Aging Mice. Oxidative Medicine and Cellular Longevity, 2020, Article ID: 8282157. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Liu, C.Y., Liu, Y.C., Wu, C., et al. (2013) Evaluation of Age-Related Interstitial Myocardial Fibrosis with Cardiac Magnetic Resonance Contrast-Enhanced T1 Mapping: MESA (Multi-Ethnic Study of Atherosclerosis). Journal of the American College of Cardiology, 62, 1280-1287. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Miyamoto, S. (2019) Autophagy and Cardiac Aging. Cell Death & Differentiation, 26, 653-664. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Shirakabe, A., Ikeda, Y., Sciarretta, S., Zablocki, D.K. and Sadoshima, J. (2016) Aging and Autophagy in the Heart. Circulation Research, 118, 1563-1576. [Google Scholar] [CrossRef]
|
|
[12]
|
Tastet, L., Kwiecinski, J., Pibarot, P., et al. (2020) Sex-Related Differences in the Extent of Myocardial Fibrosis in Patients with Aortic Valve Stenosis. Cardiovascular Imaging, 13, 699-711. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Kararigas, G., Dworatzek, E., Petrov, G., et al. (2012) Sex-Dependent Regulation of Fibrosis and Inflammation in Human Left Ventricular Remodelling under Pres-sure Overload. European Journal of Heart Failure, 16, 1160-1167. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Yusifov, A., Woulfe, K.C. and Bruns, D.R. (2022) Mechanisms and Implica-tions of Sex Differences in Cardiac Aging. The Journal of Cardiovascular Aging, 2, Article No. 20. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Hung, C.L., Gonçalves, A., Shah, A.M., et al. (2017) Age- and Sex-Related Influences on Left Ventricular Mechanics in Elderly Individuals Free of Prevalent Heart Failure: The ARIC Study (Atherosclerosis Risk in Communities). Circulation: Cardiovascular Imaging, 10, e004510. [Google Scholar] [CrossRef]
|
|
[16]
|
Olivetti, G., Giordano, G., Corradi, D., et al. (1995) Gender Differences and Aging: Effects on the Human Heart. Journal of the American College of Cardiology, 26, 1068-1079. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Leri, A., Kajstura, J., Li, B., et al. (2000) Cardio-myocyte Aging Is Gender-Dependent: The Local IGF-1-IGF-1R System. Heart Disease (Hagerstown, Md.), 2,108-115.
|
|
[18]
|
Ivey, M.J., Kuwabara, J.T., Riggsbee, K.L. and Tallquist, M.D. (2019) Platelet-Derived Growth Factor Receptor-α Is Essential for Cardiac Fibroblast Survival. American Journal of Physiology-Heart and Circulatory Physi-ology, 317, H330-H344. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Petrov, G., Regitz-Zagrosek, V., Lehmkuhl, E., et al. (2010) Regression of Myocardial Hypertrophy after Aortic Valve Replacement: Faster in Women? Circulation, 122, S23-S28. [Google Scholar] [CrossRef]
|
|
[20]
|
Kane, A.E., Bisset, E.S., Heinze-Milne, S., et al. (2021) Maladaptive Changes Associated with Cardiac Aging Are Sex-Specific and Graded by Frailty and Inflammation in C57BL/6 Mice. The Journals of Gerontology: Series A, 76, 233-243. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Dworatzek, E., Mahmoodzadeh, S., Schriever, C., et al. (2019) Sex-Specific Regulation of Collagen I and III Expression by 17β-Estradiol in Cardiac Fibroblasts: Role of Estrogen Re-ceptors. Cardiovascular Research, 115, 315-327. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Iorga, A., Cunningham, C.M., Moazeni, S., et al. (2017) The Protective Role of Estrogen and Estrogen Receptors in Cardiovascular Disease and the Controversial Use of Estrogen Therapy. Bi-ology of Sex Differences, 8, Article No. 33. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Arcones, A.C., Martínez-Cignoni, M.R., Vila-Bedmar, R., et al. (2021) Cardiac GRK2 Protein Levels Show Sexual Dimorphism during Aging and Are Regulated by ovarian Hormones. Cells, 10, Article No. 673. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Lieu, M., Traynham, C.J., de Lucia, C., et al. (2020) Loss of Dynamic Regulation of G Protein-Coupled Receptor Kinase 2 by Nitric Oxide Leads to Cardiovascular Dysfunction with Aging. American Journal of Physiology-Heart and Circulatory Physiology, 318, H1162-H1175. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Arcones, A.C., Murga, C., Penela, P., Inserte, J. and Mayor Jr., F. (2021) G protein-Coupled Receptor Kinase 2 at Crossroads of Metabolic and Cardiovascular Diseases. Current Opinion in Endocrine and Metabolic Research, 16, 75-85. [Google Scholar] [CrossRef]
|
|
[26]
|
Woodall, M.C., Woodall, B.P., Gao, E., Yuan, A. and Koch, W.J. (2016) Cardiac Fibroblast GRK2 Deletion Enhances Contractility and Remodeling Following Ischemia/Reperfusion In-jury. Circulation Research, 119, 1116-1127. [Google Scholar] [CrossRef]
|
|
[27]
|
Lenhart, P.M., Broselid, S., Barrick, C.J., Leeb-Lundberg, L.M.F. and Caron, K.M. (2013) G-Protein Coupled Receptor 30 Interacts with Receptor Activity Modifying Protein 3 and Confers Sex-Dependent Cardioprotection. Journal of Molecular Endocrinology, 51, 191-202. [Google Scholar] [CrossRef]
|
|
[28]
|
Wang, X., Ma, J., Zhang, S., et al. (2021) G Protein-Coupled Estrogen Receptor 30 Reduces Transverse Aortic Constriction-Induced Myocardial Fibrosis in Aged Female Mice by Inhibiting the ERK1/2 -MMP-9 Signaling Pathway. Frontiers in Pharmacology, 12, Article 731609. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Liu, D., Zhan, Y., Ono, K., et al. (2022) Pharmacological Activa-tion of Estrogenic Receptor G Protein-Coupled Receptor 30 Attenuates Angiotensin II-Induced Atrial Fibrosis in Ovari-ectomized Mice by Modulating TGF-β1/Smad Pathway. Molecular Biology Reports, 49, 6341-6355. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Sickinghe, A.A., Korporaal, S.J.A., Den Ruijter, H.M. and Kessler, E.L. (2019) Estrogen Contributions to Microvascular Dysfunction Evolving to Heart Failure with Preserved Ejection Fraction. Frontiers in Endocrinology, 10, Article 442. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Montalvo, C., Villar, A.V., Merino, D., et al. (2012) Androgens Contribute to Sex Differences in Myocardial Remodeling under Pressure Overload by a Mechanism Involving TGF-β. PLOS ONE, 7, e35635. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Froese, N., Wang, H., Zwadlo, C., et al. (2018) An-ti-Androgenic Therapy with Finasteride Improves Cardiac Function, Attenuates Remodeling and Reverts Pathologic Gene-Expression after Myocardial Infarction in Mice. Journal of Molecular and Cellular Cardiology, 122, 114-124. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Papamitsou, T., Barlagiannis, D., Papaliagkas, V., Kotanidou, E. and Dermentzopoulou-Theodoridou, M. (2011) Testosterone-Induced Hypertrophy, Fibrosis and Apoptosis of Cardiac Cells—An Ultrastructural and Immunohistochemical Study. Medical Science Monitor, 17, BR266-BR273. [Google Scholar] [CrossRef]
|
|
[34]
|
Wadthaisong, M., Witayavanitkul, N., Bupha-Intr, T., Wattanaperm-pool, J. and de Tombe, P.P. (2019) Chronic High- Dose Testosterone Treatment: Impact on Rat Cardiac Contractile Bi-ology. Physiological Reports, 7, e14192. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Chung, C.C., Hsu, R.C., Kao, Y.H., et al. (2014) Androgen Attenuates Cardiac Fibroblasts Activations through Modulations of Transforming Growth Factor-β and Angiotensin II Signaling. International Journal of Cardiology, 176, 386-393. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Chung, C.C., Lin, Y.K., Kao, Y.H., Lin, S.H. and Chen, Y.J. (2021) Physiological Testosterone Attenuates Profibrotic Activities of Rat Cardiac Fibroblasts through Modulation of Nitric Oxide and Calcium Homeostasis. Endocrine Journal, 68, 307-315. [Google Scholar] [CrossRef]
|
|
[37]
|
Chung, C.C., Kao, Y.H., Chen, Y.J. and Chen, Y-.J. (2013) An-drogen Modulates Cardiac Fibrosis Contributing to Gender Differences on Heart Failure. The Aging Male, 16, 22-27. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Ikeda, Y., Aihara, K., Sato, T., et al. (2005) Androgen Re-ceptor Gene Knockout Male Mice Exhibit Impaired Cardiac Growth and Exacerbation of Angiotensin II-Induced Cardiac Fibrosis. Journal of Biological Chemistry, 280, 29661- 29666. [Google Scholar] [CrossRef]
|
|
[39]
|
Chen, F., Song, F., Chen, Y., et al. (2019) Exogenous Testosterone Alleviates Cardiac Fibrosis and Apoptosis via Gas6/Axl Pathway in the Senescent Mice. Experimental Gerontology, 119,128-137. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
DuPont, J.J., Kim, S.K., Kenney, R.M. and Jaffe, I.Z. (2021) Sex Differences in the Time Course and Mechanisms of Vascular and Cardiac Aging in Mice: Role of the Smooth Muscle Cell Mineralocorticoid Receptor. American Journal of Physiology-Heart and Circulatory Physiology, 320, H169-H180. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Kim, S.K., McCurley, A.T., DuPont, J.J., et al. (2018) Smooth Muscle Cell—Mineralocorticoid Receptor as a Mediator of Cardiovascular Stiffness with Aging. Hypertension, 71, 609-621. [Google Scholar] [CrossRef]
|
|
[42]
|
Gordon, E.H., Peel, N.M., Samanta, M., et al. (2018) Sex Differences in Frailty: A Systematic Review and Meta- Analysis. Experimental Gerontology, 89, 30-40. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Kane, A.E., Keller, K.M., Heinze-Milne, S., et al. (2019) A Mu-rine Frailty Index Based on Clinical and Laboratory Measurements: Links between Frailty and Pro-Inflammatory Cyto-kines Differ in a Sex-Specific Manner. The Journals of Gerontology: Series A, 74, 275-282. [Google Scholar] [CrossRef] [PubMed]
|