|
[1]
|
Gale, S.A., Acar, D. and Daffner, K.R. (2018) Dementia. The American Journal of Medicine, 131, 1161-1169. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Scheltens, P., De Strooper, B., Kivipelto, M., Holstege, H., Chetelat, G., Teunissen, C.E., Cummings, J. and van der Flier, W.M. (2021) Alzheimer’s Disease. The Lancet, 397, 1577-1590. [Google Scholar] [CrossRef]
|
|
[3]
|
Knopman, D.S., Amieva, H., Petersen, R.C., Chetelat, G., Holtzman, D.M., Hyman, B.T., Nixon, R.A. and Jones, D.T. (2021) Alzheimer Disease. Nature Reviews Disease Primers, 7, Article No. 33. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Pasic, M.D., Diamandis, E.P., Mclaurin, J., Holtzman, D.M., Schmitt-Ulms, G. and Quirion, R. (2011) Alzheimer Disease: Advances in Pathogenesis, Diagnosis, and Therapy. Clini-cal Chemistry, 57, 664-669. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Tecalco-Cruz, A.C., Ramirez-Jarquin, J.O., Alvarez-Sanchez, M.E. and Zepeda-Cervantes, J. (2020) Epigenetic Basis of Alzheimer Disease. World Journal of Biological Chemistry, 11, 62-75. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Sanchez-Sarasua, S., Fernandez-Perez, I., Espi-nosa-Fernandez, V., Sanchez-Perez, A.M. and Ledesma, J.C. (2020) Can We Treat Neuroinflammation in Alzheimer’s Disease? International Journal of Molecular Sciences, 21, Article No. 8751. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
(2022) 2022 Alzheimer’s Disease Facts and Figures. Alzheimer’s & Dementia, 18, 700-789. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Kapadia, A., Mirrahimi, A. and Dmytriw, A.A. (2020) Intersection between Sleep and Neurovascular Coupling as the Driving Pathophysiology of Alzheimer’s Disease. Medical Hypotheses, 144, Article ID: 110283. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Vaz, M. and Silvestre, S. (2020) Alzheimer’s Disease: Recent Treatment Strategies. European Journal of Pharmacology, 887, Article ID: 173554. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Gupta, G.L. and Samant, N.P. (2021) Current Druggable Targets for Therapeutic Control of Alzheimer’s Disease. Contemporary Clinical Trials, 109, Article ID: 106549. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Ansari, N. and Khodagholi, F. (2013) Molecular Mechanism Aspect of ER Stress in Alzheimer’s Disease: Current Approaches and Future Strategies. Current Drug Targets, 14, 114-122. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Mcdade, E.M. (2022) Alzheimer Disease. Continuum (Min-neap Minn), 28, 648-675. [Google Scholar] [CrossRef]
|
|
[13]
|
Cheng, X., Song, C., Du, Y., Gaur, U. and Yang, M. (2020) Pharmacological Treatment of Alzheimer’s Disease: Insights from Drosophila melanogaster. International Journal of Molecular Sciences, 21, Article No. 4621. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Norins, L.C. (2019) Predicted Economic Damage from a Quick, Simple Alzheimer’s Disease Cure. Medical Hypotheses, 133, Article ID: 109398. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Gregory, J., Vengalasetti, Y.V., Bredesen, D.E. and Rao, R.V. (2021) Neuroprotective Herbs for the Management of Alzheimer’s Disease. Biomolecules, 11, Article No. 543. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Ballard, C., Aarsland, D., Cummings, J., O’Brien, J., Mills, R., Molinuevo, J.L., Fladby, T., Williams, G., Doherty, P., Corbett, A. and Sultana, J. (2020) Drug Repositioning and Re-purposing for Alzheimer Disease. Nature Reviews Neurology, 16, 661-673. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Ou, Y.N., Yang, Y.X., Shen, X.N., Ma, Y.H., Chen, S.D., Dong, Q., Tan, L. and Yu, J.T. (2021) Genetically Determined Blood Pressure, Antihypertensive Medications, and Risk of Alzheimer’s Disease: A Mendelian Randomization Study. Alzheimer’s Research & Therapy, 13, Article No. 41. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Cheignon, C., Tomas, M., Bonnefont-Rousselot, D., Faller, P., Hureau, C. and Collin, F. (2018) Oxidative Stress and the Amyloid Beta Peptide in Alzheimer’s Disease. Redox Biology, 14, 450-464. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Yu, L., Petyuk, V.A., Tasaki, S., Boyle, P.A., Gaiteri, C., Schneider, J.A., De Jager, P.L. and Bennett, D.A. (2019) Association of Cortical Beta-Amyloid Protein in the Absence of Insoluble Deposits with Alzheimer Disease. JAMA Neurology, 76, 818-826. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Webers, A., Heneka, M.T. and Gleeson, P.A. (2020) The Role of Innate Immune Responses and Neuroinflammation in Amyloid Accumulation and Progression of Alzheimer’s Disease. Immunology & Cell Biology, 98, 28-41. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Eimer, W.A., Vijaya, K.D., Navalpur, S.N., et al. (2018) Alzheimer’s Disease-Associated Beta-Amyloid Is Rapidly Seeded by Herpesviridae to Protect against Brain Infection. Neuron, 99, 56-63. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Simic, G., Babic, L.M., Wray, S., et al. (2016) Tau Protein Hy-perphosphorylation and Aggregation in Alzheimer’s Disease and Other Tauopathies, and Possible Neuroprotective Strategies. Biomolecules, 6, Article No. 6. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Guo, T., Noble, W. and Hanger, D.P. (2017) Roles of Tau Protein in Health and Disease. Acta Neuropathologica, 133, 665-704. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Hamano, T., Enomoto, S., Shirafuji, N., Ikawa, M., Yamamura, O., Yen, S.H. and Nakamoto, Y. (2021) Autophagy and Tau Protein. International Journal of Molecular Sciences, 22, Article No. 7475. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Goedert, M., Spillantini, M.G. and Crowther, R.A. (2015) A Brief History of Tau. Clinical Chemistry, 61, 1417-1418. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Rossi, B., Santos-Lima, B., Terrabuio, E., Zenaro, E. and Con-stantin, G. (2021) Common Peripheral Immunity Mechanisms in Multiple Sclerosis and Alzheimer’s Disease. Frontiers in Immunology, 12, Article ID: 639369. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Park, J., Baik, S.H., Mook-Jung, I., Irimia, D. and Cho, H. (2019) Mimicry of Central-Peripheral Immunity in Alzheimer’s Disease and Discovery of Neurodegenerative Roles in Neutro-phil. Frontiers in Immunology, 10, Article No. 2231. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Lim, B., Prassas, I. and Diamandis, E.P. (2021) Alzheimer Disease Pathogenesis: The Role of Autoimmunity. The Journal of Ap-plied Laboratory Medicine, 6, 756-764. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Bertholf, R.L. (2021) Is Alz-heimer Disease an Autoimmune Disorder? The Journal of Applied Laboratory Medicine, 6, 588-591. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Musicco, M., Palmer, K., Salamone, G., Lupo, F., Perri, R., Mosti, S., Spalletta, G., di Iulio, F., Pettenati, C., Cravello, L. and Caltagirone, C. (2009) Predictors of Progression of Cognitive Decline in Alzheimer’s Disease: The Role of Vascular and Sociodemographic Factors. Journal of Neurology, 256, 1288-1295. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Sproviero, W., Winchester, L., Newby, D., et al. (2021) High Blood Pressure and Risk of Dementia: A Two-Sample Mendelian Randomization Study in the UK Biobank. Biological Psychiatry, 89, 817-824. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Nasrallah, I.M., Pajewski, N.M., Auchus, A.P., et al. (2019) Association of Intensive vs Standard Blood Pressure Control with Cerebral White Matter Lesions. JAMA, 322, 524-534. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Takeuchi, H. and Kawashima, R. (2022) Effects of Diastolic Blood Pressure on Brain Structures and Cognitive Functions in Middle and Old Ages: Longitudinal Analyses. Nutrients, 14, Article No. 2464. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Harrison, J.K., Van Der Wardt, V., Conroy, S.P., et al. (2016) New Ho-rizons: The Management of Hypertension in People with Dementia. Age Ageing, 45, 740-746. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Walker, K.A., Sharrett, A.R., Wu, A., et al. (2019) Association of Mid-life to Late-Life Blood Pressure Patterns with Incident Dementia. JAMA, 322, 535-545. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Launer, L.J. (2019) Blood Pressure Control as an Intervention to Prevent Dementia. The Lancet Neurology, 18, 906-908. [Google Scholar] [CrossRef]
|
|
[37]
|
Thordardottir, S., Almkvist, O., Johansson, C., et al. (2020) Cerebrospinal Fluid ykl-40 and Neurogranin in Familial Alzheimer’s Disease: A Pilot Study. Journal of Alzheimer’s Disease, 76, 941-953. [Google Scholar] [CrossRef]
|
|
[38]
|
Hellwig, K., Kvartsberg, H., Portelius, E., et al. (2015) Neurogranin and ykl-40: Independent Markers of Synaptic Degeneration and Neuroinflammation in Alzheimer’s Disease. Alzheimer’s Research & Therapy, 7, Article No. 74. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Dhiman, K., Blennow, K., Zetterberg, H., Martins, R.N. and Gupta, V.B. (2019) Cerebrospinal Fluid Biomarkers for Understanding Multiple Aspects of Alzheimer’s Disease Patho-genesis. Cellular and Molecular Life Sciences, 76, 1833-1863. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Megur, A., Baltriukiene, D., Bukelskiene, V. and Burokas, A. (2020) The Microbiota-Gut-Brain Axis and Alzheimer’s Disease: Neuroinflammation Is to Blame? Nutrients, 13, Article No. 37. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Lopez-Arrieta, J.M. and Birks, J. (2000) Nimodipine for Primary Degenerative, Mixed and Vascular Dementia. Cochrane Database of Systematic Reviews, No. 3, D147. [Google Scholar] [CrossRef]
|
|
[42]
|
de Jonge, M.C. and Traber, J. (1993) Nimodipine: Cognition, Aging, and Degeneration. Clinical Neuropharmacology, 16, S25-S30. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Dobarro, M., Gerenu, G. and Ramirez, M.J. (2013) Propranolol Reduces Cognitive Deficits, Amyloid and Tau Pathology in Alzheimer’s Transgenic Mice. International Journal of Neuropsychopharmacology, 16, 2245-2257. [Google Scholar] [CrossRef]
|
|
[44]
|
Trigian, L.J., Royea, J., Lacalle-Aurioles, M., Tong, X.K. and Hamel, E. (2018) Pleiotropic Benefits of the Angiotensin Receptor Blocker Candesartan in a Mouse Model of Alzheimer Disease. Hypertension, 72, 1217-1226. [Google Scholar] [CrossRef]
|
|
[45]
|
de Oliveira, F.F., Bertolucci, P.H., Chen, E.S. and Smith, M.C. (2014) Brain-Penetrating Angiotensin-Converting Enzyme Inhibitors and Cognitive Change in Patients with Dementia Due to Alzheimer’s Disease. Journal of Alzheimer’s Disease, 42, S321-S324. [Google Scholar] [CrossRef]
|
|
[46]
|
Zhang, B., Li, W., Zhuo, Y., et al. (2021) L-3-n-butylphthalide Effec-tively Improves the Glymphatic Clearance and Reduce Amyloid-Beta Deposition in Alzheimer’s Transgenic Mice. Jour-nal of Molecular Neuroscience, 71, 1266-1274. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Morris, J.K., Vidoni, E.D., Johnson, D.K., et al. (2017) Aerobic Exercise for Alzheimer’s Disease: A Randomized Controlled Pilot Trial. PLOS ONE, 12, e170547. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Valenzuela, P.L., Castillo-Garcia, A., Morales, J.S., et al. (2020) Exercise Benefits on Alzheimer’s Disease: State-of-the-Science. Ageing Research Reviews, 62, Article ID: 101108. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Mcgrattan, A.M., Mcguinness, B., Mckinley, M.C., et al. (2019) Diet and Inflammation in Cognitive Ageing and Alzheimer’s Disease. Current Nutrition Reports, 8, 53-65. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Rusek, M., Pluta, R., Ulamek-Koziol, M. and Czuczwar, S.J. (2019) Ketogenic Diet in Alzheimer’s Disease. International Journal of Molecular Sciences, 20, Article No. 3892. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Broom, G.M., Shaw, I.C. and Rucklidge, J.J. (2019) The Ketogenic Di-et as a Potential Treatment and Prevention Strategy for Alzheimer’s Disease. Nutrition, 60, 118-121. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
de Freitas, G.B., Lourenco, M.V. and De Felice, F.G. (2020) Pro-tective Actions of Exercise-Related fndc5/irisin in Memory and Alzheimer’s Disease. Journal of Neurochemistry, 155, 602-611. [Google Scholar] [CrossRef] [PubMed]
|