|
[1]
|
Abdeali, G., Bahramian, A.R. and Abdollahi, M. (2020) Review on Nanostructure Supporting Material Strategies in Shape-Stabilized Phase Change Materials. Journal of Energy Storage, 29, Article ID: 101299. [Google Scholar] [CrossRef]
|
|
[2]
|
Akeiber, H., Nejat, P., Majid, M.Z.A., et al. (2016) A Review on Phase Change Material (PCM) for Sustainable Passive Cooling in Building Envelopes. Renewable and Sustainable En-ergy Reviews, 60, 1470-1497. [Google Scholar] [CrossRef]
|
|
[3]
|
Du, K., Calautit, J., Wang, Z., et al. (2018) A Review of the Appli-cations of Phase Change Materials in Cooling, Heating and Power Generation in Different Temperature Ranges. Applied Energy, 220, 242-273. [Google Scholar] [CrossRef]
|
|
[4]
|
Ahmed, S.F., Khalid, M., Rashmi, W., et al. (2017) Recent Progress in Solar Thermal Energy Storage Using Nanomaterials. Renewable and Sustainable Energy Reviews, 67, 450-460. [Google Scholar] [CrossRef]
|
|
[5]
|
Alkilani, M.M., Sopian, K., Alghoul, M.A., et al. (2011) Review of Solar Air Collectors with Thermal Storage Units. Renewable and Sustainable Energy Reviews, 3, 1476-1490. [Google Scholar] [CrossRef]
|
|
[6]
|
Koohi-Fayegh, S. and Rosen, M.A. (2020) A Review of Energy Storage Types, Applications and Recent Developments. Journal of Energy Storage, 27, Article ID: 101047. [Google Scholar] [CrossRef]
|
|
[7]
|
Li, S., Wang, H., Mao, H., et al. (2019) Light-to-Thermal Conver-sion and Thermoregulated Capability of Coaxial Fibers with a Combined Influence from Comb-Like Polymeric Phase Change Material and Carbon Nanotube. ACS Applied Materials &Interfaces, 15, 14150-14158. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Su, W., Darkwa, J. and Kokogiannakis, G. (2015) Review of Sol-id-Liquid Phase Change Materials and Their Encapsulation Technologies. Renewable and Sustainable Energy Reviews, 48, 373-391. [Google Scholar] [CrossRef]
|
|
[9]
|
Wu, S., Yan, T., Kuai, Z., et al. (2020) Thermal Conductivity En-hancement on Phase Change Materials for Thermal Energy Storage: A Review. Energy Storage Materials, 25, 251-295. [Google Scholar] [CrossRef]
|
|
[10]
|
Christopher, S., Parham, K., Mosaffa, A.H., et al. (2021) A Criti-cal Review on Phase Change Material Energy Storage Systems with Cascaded Configurations. Journal of Cleaner Pro-duction, 283, Article ID: 124653. [Google Scholar] [CrossRef]
|
|
[11]
|
Fallahi, A., Guldentops, G., Tao, M., et al. (2017) Review on Solid-Solid Phase Change Materials for Thermal Energy Storage: Molecular Structure and Thermal Properties. Applied Thermal Engineering, 127, 1427-1441. [Google Scholar] [CrossRef]
|
|
[12]
|
Goli, P., Legedza, S., Dhar, A., et al. (2014) Gra-phene-Enhanced Hybrid Phase Change Materials for Thermal Management of Li-Ion Batteries. Journal of Power Sources, 248, 37-43. [Google Scholar] [CrossRef]
|
|
[13]
|
Chen, X., Gao, H., Hai, G., et al. (2020) Carbon Nanotube Bundles Assembled Flexible Hierarchical Framework Based Phase Change Material Composites for Thermal Energy Harvesting and Thermotherapy. Energy Storage Materials, 26, 129-137. [Google Scholar] [CrossRef]
|
|
[14]
|
Cárdenas-Ramírez, C., Jaramillo, F. and Gómez, M. (2020) Sys-tematic Review of Encapsulation and Shape-Stabilization of Phase Change Materials. Journal of Energy Storage, 30, Ar-ticle ID: 101495. [Google Scholar] [CrossRef]
|
|
[15]
|
Alva, G., Lin, Y., Liu, L., et al. (2017) Synthesis, Characterization and Applications of Microencapsulated Phase Change Materials in Thermal Energy Storage: A Review. Energy and Buildings, 144, 276-294. [Google Scholar] [CrossRef]
|
|
[16]
|
Aramesh, M. and Shabani, B. (2022) Metal Foam-Phase Change Material Composites for Thermal Energy Storage: A Review of Performance Parameters. Renewable and Sus-tainable Energy Reviews, 155, Article ID: 111919. [Google Scholar] [CrossRef]
|
|
[17]
|
Chandra, D., Chellappa, R. and Chien, W.-M. (2005) Thermody-namic Assessment of Binary Solid-State Thermal Storage Materials. Journal of Physics and Chemistry of Solids, 66, 235-240. [Google Scholar] [CrossRef]
|
|
[18]
|
Zhang, N., Yuan, Y., Cao, X., et al. (2018) Latent Heat Thermal Energy Storage Systems with Solid-Liquid Phase Change Materials: A Review. Advanced Engineering Materi-als, 20, Article ID: 1700753. [Google Scholar] [CrossRef]
|
|
[19]
|
Ke, H. (2017) Phase Diagrams, Eutectic Mass Ratios and Thermal Energy Storage Properties of Multiple Fatty Acid Eutectics as Novel Solid-Liquid Phase Change Materials for Storage and Retrieval of Thermal Energy. Applied Thermal Engineering, 113, 1319-1331. [Google Scholar] [CrossRef]
|
|
[20]
|
Hu, P., Zhao, P.-P., Jin, Y., et al. (2014) Experimental Study on Solid-Solid Phase Change Properties of Pentaerythritol (PE)/Nano-AlN Composite for Thermal Storage. Solar Energy, 102, 91-97. [Google Scholar] [CrossRef]
|
|
[21]
|
Du, X., Qiu, J., Deng, S., et al. (2021) Flame-Retardant and Solid-Solid Phase Change Composites Based on Dopamine-Decorated BP Nanosheets/Polyurethane for Efficient So-lar-to-Thermal Energy Storage. Renewable Energy, 164, 1-10. [Google Scholar] [CrossRef]
|
|
[22]
|
Wang, R., Xiao, Y. and Lei, J. (2020) A Solid-Solid Phase Change Material Based on Dynamic Ion Cross-Linking with Reprocessability at Room Temperature. Chemical Engi-neering Journal, 390, Article ID: 124586. [Google Scholar] [CrossRef]
|
|
[23]
|
Zhou, Y., Wang, X., Liu, X., et al. (2019) Polyurethane-Based Sol-id-Solid Phase Change Materials with Halloysite Nanotubes-Hybrid Graphene Aerogels for Efficient Light- and Elec-tro-Thermal Conversion and Storage. Carbon, 142, 558-566. [Google Scholar] [CrossRef]
|
|
[24]
|
Liao, L., Cao, Q. and Liao, H. (2010) Investigation of a Hyper-branched Polyurethane as a Solid-State Phase Change Material. Journal of Materials Science, 9, 2436-2441. [Google Scholar] [CrossRef]
|
|
[25]
|
Wang, Y., Zheng, H., Feng, H.X., et al. (2012) Effect of Prepara-tion Methods on the Structure and Thermal Properties of Stearic Acid/Activated Montmorillonite Phase Change Materials. Energy and Buildings, 47, 467-473. [Google Scholar] [CrossRef]
|
|
[26]
|
Sarı, A. and Biçer, A. (2012) Thermal Energy Storage Proper-ties and Thermal Reliability of Some Fatty Acid Esters/Building Material Composites as Novel Form-Stable PCMs. Solar Energy Materials and Solar Cells, 101, 114-122. [Google Scholar] [CrossRef]
|
|
[27]
|
Li, M., Chen, M. and Wu, Z. (2014) Enhancement in Thermal Property and Mechanical Property of Phase Change Microcapsule with Modified Carbon Nanotube. Applied Energy, 127, 166-171. [Google Scholar] [CrossRef]
|
|
[28]
|
Singh, H., Talekar, A., Chien, W.-M., et al. (2015) Continu-ous Solid-State Phase Transitions in Energy Storage Materials with Orientational Disorder-Computational and Experi-mental Approach. Energy, 91, 334-349. [Google Scholar] [CrossRef]
|
|
[29]
|
Kuznik, F., David, D., Johannes, K., et al. (2011) A Review on Phase Change Materials Integrated in Building Walls. Renewable and Sustainable Energy Reviews, 15, 379-391. [Google Scholar] [CrossRef]
|
|
[30]
|
Kim, J., Chun, H., Baek, J., et al. (2022) Parameter Identification of Lithium-Ion Battery Pseudo-2-Dimensional Models Using Genetic Algorithm and Neural Network Cooperative Optimi-zation. Journal of Energy Storage, 45, Article ID: 103571. [Google Scholar] [CrossRef]
|
|
[31]
|
Prajapati, D.G. and Kandasubramanian, B. (2019) A Review on Polymeric-Based Phase Change Material for Thermo-Regulating Fabric Application. Polymer Reviews, 3, 389-419. [Google Scholar] [CrossRef]
|
|
[32]
|
Oró, E., de Gracia, A., Castell, A., et al. (2012) Review on Phase Change Materials (PCMs) for Cold Thermal Energy Storage Applications. Applied Energy, 99, 513-533. [Google Scholar] [CrossRef]
|
|
[33]
|
Hasan, A., McCormack, S.J., Huang, M.J., et al. (2010) Evaluation of Phase Change Materials for Thermal Regulation Enhancement of Building Integrated Photovoltaics. Solar Energy, 9, 1601-1612. [Google Scholar] [CrossRef]
|
|
[34]
|
Arıcı, M., Bilgin, F., Nižetić, S., et al. (2020) PCM Integrated to External Building Walls: An Optimization Study on Maximum Activation of Latent Heat. Applied Thermal Engineering, 165, Article ID: 114560. [Google Scholar] [CrossRef]
|
|
[35]
|
Guichard, S., Miranville, F., Bigot, D., et al. (2014) A Thermal Model for Phase Change Materials in a Building Roof for a Tropical and Humid Climate: Model Description and Elements of Validation. Energy and Buildings, 70, 71-80. [Google Scholar] [CrossRef]
|
|
[36]
|
Li, D., Wu, Y., Wang, B., et al. (2020) Optical and Thermal Performance of Glazing Units Containing PCM in Buildings: A Review. Construction and Building Materials, 233, Ar-ticle ID: 117327. [Google Scholar] [CrossRef]
|
|
[37]
|
da Cunha, S.R.L. and de Aguiar, J.L.B. (2020) Phase Change Materials and Energy Efficiency of Buildings: A Review of Knowledge. Journal of Energy Storage, 27, Article ID: 101083. [Google Scholar] [CrossRef]
|
|
[38]
|
Kenisarin, M.M., Mahkamov, K., Costa, S.C., et al. (2020) Melting and Solidification of PCMs inside a Spherical Capsule: A Critical Review. Journal of Energy Storage, 27, Article ID: 101082. [Google Scholar] [CrossRef]
|
|
[39]
|
Peng, G., Dou, G., Hu, Y., et al. (2020) Phase Change Material (PCM) Microcapsules for Thermal Energy Storage. Advances in Polymer Technology, 2020, Article ID: 9490873. [Google Scholar] [CrossRef]
|
|
[40]
|
Gunasekara, S.N., Pan, R., Chiu, J.N., et al. (2016) Polyols as Phase Change Materials for Surplus Thermal Energy Storage. Applied Energy, 162, 1439-1452. [Google Scholar] [CrossRef]
|
|
[41]
|
Whitman, C.A., Johnson, M.B. and White, M.A. (2012) Characterization of Thermal Performance of a Solid-Solid Phase Change Material, Di-n-hexylammonium Bromide, for Potential Integration in Building Materials. Thermochimica Acta, 531, 54-59. [Google Scholar] [CrossRef]
|
|
[42]
|
Luo, M., Song, J., Ling, Z., et al. (2021) Phase Change Material Coat for Battery Thermal Management with Integrated Rapid Heating and Cooling Functions from −40 ˚C to 50 ˚C. Ma-terials Today Energy, 20, Article ID: 100652. [Google Scholar] [CrossRef]
|
|
[43]
|
Jiang, G., Huang, J., Fu, Y., et al. (2016) Thermal Optimization of Composite Phase Change Material/Expanded Graphite for Li-Ion Battery Thermal Management. Applied Thermal En-gineering, 108, 1119-1125. [Google Scholar] [CrossRef]
|
|
[44]
|
Fang, G., Li, H., Yang, F., et al. (2009) Preparation and Characterization of Nano-Encapsulated n-tetradecane as Phase Change Material for Thermal Energy Storage. Chemical Engineering Journal, 153, 217-221. [Google Scholar] [CrossRef]
|
|
[45]
|
Lian, Q., Li, Y., Sayyed, A.A.S., et al. (2018) Facile Strategy in De-signing Epoxy/Paraffin Multiple Phase Change Materials for Thermal Energy Storage Applications. ACS Sustainable Chemistry & Engineering, 3, 3375-3384. [Google Scholar] [CrossRef]
|
|
[46]
|
Qian, T., Li, J., Ma, H., et al. (2015) The Preparation of a Green Shape-Stabilized Composite Phase Change Material of Polyethylene Glycol/SiO2 with Enhanced Thermal Perfor-mance Based on Oil Shale Ash via Temperature-Assisted Sol-Gel Method. Solar Energy Materials and Solar Cells, 13, 29-39. [Google Scholar] [CrossRef]
|
|
[47]
|
Tian, C., Ning, J., Yang, Y., et al. (2022) Super Tough and Stable Solid-Solid Phase Change Material Based on π-π Stacking. Chemical Engineering Journal, 429, Article ID: 132447. [Google Scholar] [CrossRef]
|
|
[48]
|
Fu, X., Lei, Y., Xiao, Y., et al. (2021) Graft Poly(ethylene glycol)-Based Thermosetting Phase Change Materials Networks with Ultrahigh Encapsulation Fraction and Latent Heat Efficiency. Renewable Energy, 179, 1076-1084. [Google Scholar] [CrossRef]
|
|
[49]
|
Thakur, V.K. and Kessler, M.R. (2015) Self-Healing Polymer Nanocomposite Materials: A Review. Polymer, 69, 369-383. [Google Scholar] [CrossRef]
|
|
[50]
|
Bauer, G., Nellesen, A. and Speck, T. (2010) Biological Lattic-es in Fast Self-Repair Mechanisms in Plants and the Development of Bio-Inspired Self-Healing Polymers. 138, 453-459. [Google Scholar] [CrossRef]
|
|
[51]
|
Hillewaere, X.K.D. and Du Prez, F.E. (2015) Fifteen Chemistries for Au-tonomous External Self-Healing Polymers and Composites. Progress in Polymer Science, 4, 121-153. [Google Scholar] [CrossRef]
|
|
[52]
|
Liu, Y.-L. and Chuo, T.-W. (2013) Self-Healing Poly-mers Based on Thermally Reversible Diels-Alder Chemistry. Polymer Chemistry, 7, 21-35. [Google Scholar] [CrossRef]
|
|
[53]
|
Wei, Z., Yang, J.H., Zhou, J., et al. (2014) Self-Healing Gels Based on Constitutional Dynamic Chemistry and Their Potential Applications. Chemical Society Reviews, 23, 8114-8131. [Google Scholar] [CrossRef]
|
|
[54]
|
Yang, Y., Ding, X. and Urban, M.W. (2015) Chemical and Physical Aspects of Self-Healing Materials. Progress in Polymer Science, 55, 34-59. [Google Scholar] [CrossRef]
|
|
[55]
|
Yang, Y. and Urban, M.W. (2013) Self-Healing Poly-meric Materials. Chemical Society Reviews, 17, 7446-7467. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Alder, K. and Diels, O. (1931) Synthesen in der hydroaromatischen Reihe XI Mitteilung. Justus Liebigs Annalen der Chemie, 21, 236-242.
|
|
[57]
|
Wu, B., Wang, Y., Liu, Z., et al. (2019) Thermally Reliable, Recyclable and Malleable Solid-Solid Phase-Change Materials through the Classical Diels-Alder Reaction for Sustainable Thermal Energy Storage. Journal of Materials Chemistry A, 38, 21802-21811. [Google Scholar] [CrossRef]
|
|
[58]
|
Imbernon, L., Oikonomou, E.K., Norvez, S., et al. (2015) Chemically Crosslinked Yet Reprocessable Epoxidized Natural Rubber via Thermo-Activated Disulfide Rearrangements. Polymer Chemistry, 23, 4271-4278. [Google Scholar] [CrossRef]
|
|
[59]
|
Rivero, G., Nguyen, L.-T.T., Hillewaere, X.K.D., et al. (2014) One-Pot Thermo-Remendable Shape Memory Polyurethanes. Macromolecules, 6, 2010-2018. [Google Scholar] [CrossRef]
|
|
[60]
|
Deng, G., Tang, C., Li, F., et al. (2010) Covalent Cross-Linked Polymer Gels with Reversible Sol-Gel Transition and Self-Healing Properties. Macromolecules, 3, 1191-1194. [Google Scholar] [CrossRef]
|
|
[61]
|
Ren, J., Dong, X., Duan, Y., et al. (2022) Synthesis and Self-Healing In-vestigation of Waterborne Polyurethane Based on Reversible Covalent Bond. Journal of Applied Polymer Science, 20, Article No. 52144. [Google Scholar] [CrossRef]
|
|
[62]
|
Chen, Y., Shi, C., Zhang, Z., et al. (2022) Preparation and Properties of Self-Healing Polyurethane without External Stimulation. Polymer Bulletin, 5, 529-536. [Google Scholar] [CrossRef]
|
|
[63]
|
Wang, X.-Z., Lu, M.-S., Zeng, J.-B., et al. (2021) Malleable and Thermally Recyclable Polyurethane Foam. Green Chemistry, 23, 307-313. [Google Scholar] [CrossRef]
|
|
[64]
|
Kong, W., Yang, Y., Yuan, A., et al. (2021) Processable and Recycla-ble Crosslinking Solid-Solid Phase Change Materials Based on Dynamic Disulfide Covalent Adaptable Networks for Thermal Energy Storage. Energy, 232, Article ID: 121070. [Google Scholar] [CrossRef]
|
|
[65]
|
Zhang, B., Fan, H., Xu, W., et al. (2022) Thermally Triggered Self-Healing Epoxy Coating towards Sustained Anti-Corrosion. Journal of Materials Research and Technology, 17, 2684-2689. [Google Scholar] [CrossRef]
|
|
[66]
|
Rekondo, A., Martin, R., Ruiz de Luzuriaga, A., et al. (2014) Cata-lyst-Free Room-Temperature Self-Healing Elastomers Based on Aromatic Disulfide Metathesis. Materials Horizons, 1, 237-240. [Google Scholar] [CrossRef]
|
|
[67]
|
Chen, H., Ma, X., Wu, S., et al. (2014) A Rapidly Self-Healing Supramolecular Polymer Hydrogel with Photostimulated Room-Temperature Phosphorescence Respon-siveness. Angewandte Chemie International Edition, 51, 14149-14152. [Google Scholar] [CrossRef] [PubMed]
|
|
[68]
|
Shi, Y., Wnag, M., Ma, C., et al. (2015) A Conductive Self-Healing Hybrid Gel Enabled by Metal-Ligand Supramolecule and Nanostructured Conductive Polymer. Nano Letter, 9, 6276-6281. [Google Scholar] [CrossRef] [PubMed]
|
|
[69]
|
Mozhdehi, D., Ayala, S., Cromwell, O.R., et al. (2014) Self-Healing Multiphase Polymers via Dynamic Metal-Ligand Interactions. Journal of the American Chemical Society, 46, 16128-16131. [Google Scholar] [CrossRef] [PubMed]
|
|
[70]
|
Fox, J., Wie, J.J., Greenland, B.W., et al. (2012) High-Strength, Healable, Supramolecular Polymer Nanocomposites. Journal of the American Chemical Society, 11, 5362-5368. [Google Scholar] [CrossRef] [PubMed]
|
|
[71]
|
Tuncaboylu, D.C., Sahin, M., Argun, A., et al. (2012) Dynam-ics and Large Strain Behavior of Self-Healing Hydrogels with and without Surfactants. Macromolecules, 4, 1991-2000. [Google Scholar] [CrossRef]
|
|
[72]
|
Wang, Y., Li, T., Li, S., et al. (2015) Healable and Optically Transparent Polymeric Films Capable of Being Erased on Demand. ACS Applied Material Interfaces, 24, 13597-13603. [Google Scholar] [CrossRef] [PubMed]
|
|
[73]
|
Harada, A., Takashima, Y. and Nakahata, M. (2014) Supramolecular Polymeric Materials via Cyclodextrin-Guest Interactions. Accounts of Chemical Research, 7, 2128-2140. [Google Scholar] [CrossRef] [PubMed]
|
|
[74]
|
Kakuta, T., Takashima, Y., Sano, T., et al. (2015) Adhesion between Sem-ihard Polymer Materials Containing Cyclodextrin and Adamantane Based on Host-Guest Interactions. Macromolecules, 3, 732-738. [Google Scholar] [CrossRef]
|
|
[75]
|
Herbst, F., Dohler, D., Michael, P., et al. (2013) Self-Healing Polymers via Supramolecular Forces. Macromolecular Rapid Communications, 3, 203-220. [Google Scholar] [CrossRef] [PubMed]
|
|
[76]
|
Li, C.H., Wang, C., Keplinger, C., et al. (2016) A Highly Stretchable Autonomous Self-Healing Elastomer. Nature Chemistry, 6, 618-624. [Google Scholar] [CrossRef] [PubMed]
|
|
[77]
|
Wang, W., Wang, F., Zhang, C., et al. (2020) Robust, Reprocessable, and Reconfigurable Cellulose-Based Multiple Shape Memory Polymer Enabled by Dynamic Metal-Ligand Bonds. ACS Ap-plied Materials Interfaces, 22, 25233-25242. [Google Scholar] [CrossRef] [PubMed]
|
|
[78]
|
Fan, H., Wang, L., Feng, X., et al. (2017) Supramolecular Hydrogel Formation Based on Tannic Acid. Macromolecules, 50, 666-676. [Google Scholar] [CrossRef]
|
|
[79]
|
Xu, H., Jiang, L., Yuan, A., et al. (2021) Thermally-Stable, Solid-Solid Phase Change Materials Based on Dynamic Metal-Ligand Coordination for Efficient Thermal Energy Storage. Chemical Engineering Journal, 421, Article ID: 129833. [Google Scholar] [CrossRef]
|
|
[80]
|
Cao, Y., Meng, Y., Jiang, Y., et al. (2022) Healable Supramolecular Phase Change Polymers for Thermal Energy Harvesting and Storage. Chemical Engineering Journal, 433, Article ID: 134549. [Google Scholar] [CrossRef]
|