|
[1]
|
Huang, Y., Wang, Y.U., Wang, H., et al. (2019) Prevalence of Mental Disorders in China: A Cross-Sectional Epidemiological Study. The Lancet Psychiatry, 6, 211-224. [Google Scholar] [CrossRef]
|
|
[2]
|
Kosinski, M., Stillwell, D. and Graepel, T. (2013) Private Traits and Attributes Are Predictable from Digital Records of Human Behavior. Proceedings of the National Academy of Sciences, 110, 5802-5805. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
苏悦, 刘明明, 赵楠, 刘晓倩, 朱廷劭. 基于社交媒体数据的心理指标识别建模: 机器学习的方法[J]. 心理科学进展, 2021, 29(4): 571-585.
|
|
[4]
|
朱廷劭, 汪静莹, 赵楠, 刘晓倩. 论大数据时代的心理学研究变革[J]. 新疆师范大学学报(哲学社会科学版), 2015, 36(4): 100-107+2.
|
|
[5]
|
Jordan, M.I. and Mitchell, T.M. (2015) Machine Learning: Trends, Perspectives, and Prospects. Science, 349, 255-260. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Oseguera, O., Rinaldi, A., Tuazon, J., et al. (2017) Automatic Quantification of the Veracity of Suicidal Ideation in Counseling Transcripts. In: Stephanidis, C., Ed., International Conference on Human-Computer Interaction, Springer, Cham, 473-479. [Google Scholar] [CrossRef]
|
|
[7]
|
Strous, R.D., Koppel, M., Fine, J., et al. (2009) Automated Characterization and Identification of Schizophrenia in Writing. The Journal of Nervous and Mental Disease, 197, 585-588. [Google Scholar] [CrossRef]
|
|
[8]
|
Wu, J.L., Yu, L.C. and Chang, P.C. (2012) Detecting Causality from Online Psychiatric Texts Using Inter-Sentential Language Patterns. BMC Medical Informatics and Decision Making, 12, Article No. 72. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Sano, A., Phillips, A.J., Amy, Z.Y., et al. (2015) Recognizing Academic Performance, Sleep Quality, Stress Level, and Mental Health Using Personality Traits, Wearable Sensors and Mobile Phones. 2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN), Cambridge, 9-12 June 2015, 1-6. [Google Scholar] [CrossRef]
|
|
[10]
|
Alam, M.G.R., Abedin, S.F., Al Ameen, M., et al. (2016) Web of Objects Based Ambient Assisted Living Framework for Emergency Psychiatric State Prediction. Sensors, 16, Article No. 1431. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Kliper, R., Portuguese, S. and Weinshall, D. (2015) Prosodic Analysis of Speech and the Underlying Mental State. In: Serino, S., et al., Eds., International Symposium on Pervasive Computing Paradigms for Mental Health, Springer, Cham, 52-62. [Google Scholar] [CrossRef]
|
|
[12]
|
Fraser, K.C., Meltzer, J.A. and Rudzicz, F. (2016) Linguistic Features Identify Alzheimer’s Disease in Narrative Speech. Journal of Alzheimer’s Disease, 49, 407-422. [Google Scholar] [CrossRef]
|
|
[13]
|
Sheela Kumari, R., Varghese, T., Kesavadas, C., et al. (2014) Longitudinal Evaluation of Structural Changes in Frontotemporal Dementia Using Artificial Neural Networks. In: Satapathy, S.C., et al., Eds., Proceedings of the International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA), Springer, Cham, 165-172. [Google Scholar] [CrossRef]
|
|
[14]
|
Doan, N.T., Engvig, A., Zaske, K., et al. (2017) Distinguishing Early and Late Brain Aging from the Alzheimer’s Disease Spectrum: Consistent Morphological Patterns across Independent Samples. Neuroimage, 158, 282-295. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Bosl, W.J., Loddenkemper, T. and Nelson, C.A. (2017) Nonlinear EEG Biomarker Profiles for Autism and Absence Epilepsy. Neuropsychiatric Electrophysiology, 3, Article No. 1. [Google Scholar] [CrossRef]
|
|
[16]
|
Mohammadi, M., Al-Azab, F., Raahemi, B., et al. (2015) Data Mining EEG Signals in Depression for Their Diagnostic Value. BMC Medical Informatics and Decision Making, 15, Article No. 108. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Skåtun, K.C., Kaufmann, T., Doan, N.T., et al. (2017) Consistent Functional Connectivity Alterations in Schizophrenia Spectrum Disorder: A Multisite Study. Schizophrenia Bulletin, 43, 914-924. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Dimitriadis, S.I., Liparas, D., Tsolaki, M.N., et al. (2018) Random Forest Feature Selection, Fusion and Ensemble Strategy: Combining Multiple Morphological MRI Measures to Discriminate among Healthy Elderly, MCI, cMCI and Alzheimer’s Disease Patients: From the Alzheimer’s Disease Neuroimaging Initiative (ADNI) Database. Journal of Neuroscience Methods, 302, 14-23. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Koutsouleris, N., Kambeitz-Ilankovic, L., Ruhrmann, S., et al. (2018) Prediction Models of Functional Outcomes for Individuals in the Clinical High-Risk State for Psychosis or with Recent-Onset Depression: A Multimodal, Multisite Machine Learning Analysis. JAMA Psychiatry, 75, 1156-1172. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Cook, B.L., Progovac, A.M., Chen, P., et al. (2016) Novel Use of Natural Language Processing (NLP) to Predict Suicidal Ideation and Psychiatric Symptoms in a Text-Based Mental Health Intervention in Madrid. Computational and Mathematical Methods in Medicine, 2016, Article ID: 8708434. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Yang, S., Zhou, P., Duan, K., et al. (2018) emHealth: Towards Emotion Health through Depression Prediction and Intelligent Health Recommender System. Mobile Networks and Applications, 23, 216-226. [Google Scholar] [CrossRef]
|
|
[22]
|
Chalmers, C., Hurst, W., Mackay, M., et al. (2016) A Smart Health Monitoring Technology. In: Huang, D.-S., et al., Eds., International Conference on Intelligent Computing, Springer, Cham, 832-842. [Google Scholar] [CrossRef]
|
|
[23]
|
Salafi, T. and Kah, J.C.Y. (2015) Design of Unobtrusive Wearable Mental Stress Monitoring Device Using Physiological Sensor. In: Goh, J. and Lim, C.T., Eds., 7th WACBE World Congress on Bioengineering 2015, Springer, Cham, 11-14. [Google Scholar] [CrossRef]
|
|
[24]
|
Liang, X., Gu, S., Deng, J., et al. (2015) Investigation of College Students’ Mental Health Status via Semantic Analysis of Sina Microblog. Wuhan University Journal of Natural Sciences, 20, 159-164. [Google Scholar] [CrossRef]
|
|
[25]
|
Li, W., Frank, E., Zhao, Z., et al. (2020) Mental Health of Young Physicians in China during the Novel Coronavirus Disease 2019 Outbreak. JAMA Network Open, 3, e2010705. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Liu, T., Li, S., Qiao, X., et al. (2021) Longitudinal Change of Mental Health among Active Social Media Users in China during the COVID-19 Outbreak. Healthcare (Basel), 9, Article No. 833. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Dipnall, J.F., Pasco, J.A., Berk, M., et al. (2017) Why So GLUMM? Detecting Depression Clusters through Graphing Lifestyle-Environs Using Machine-Learning Methods (GLUMM). European Psychiatry, 39, 40-50. [Google Scholar] [CrossRef] [PubMed]
|