|
[1]
|
He, J., Zhang, P., Shen, L., Niu, L., Tan, Y., Chen, L., Zhao, Y., Bai, L., Hao, X., Li, X., Zhang, S. and Zhu, L. (2020) Short-Chain Fatty Acids and Their Association with Signalling Pathways in Inflammation, Glucose and Lipid Metabo-lism. International Journal of Molecular Sciences, 21, Article No. 6356. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Parada Venegas, D., De la Fuente, M.K., Landskron, G., González, M.J., Quera, R., Dijkstra, G., Harmsen, H.J.M., Faber, K.N. and Hermoso, M.A. (2019) Short Chain Fatty Acids (SCFAs)-Mediated Gut Epithelial and Immune Regulation and Its Relevance for Inflammatory Bowel Diseases. Fron-tiers in Immunology, 10, Article 1486. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Den Besten, G., Van Eunen, K., Groen, A.K., Venema, K., Reijngoud, D.J. and Bakker, B.M. (2013) The Role of Short-Chain Fatty Acids in the Interplay between Diet, Gut Mi-crobiota, and Host Energy Metabolism. Journal of Lipid Research, 54, 2325-2340. [Google Scholar] [CrossRef]
|
|
[4]
|
杨雪, 高亚男, 王加启, 郑楠. 短链脂肪酸的功能研究进展[J/OL]. 食品科学, 1-16.
https://kns-cnki-net.webvpn.gszy.edu.cn/kcms/detail/11.2206.TS.20220930.1745.012.html, 2022-11-13.
|
|
[5]
|
Soderborg, T.K., Carpenter, C.M., Janssen, R.C., Weir, T.L., Robertson, C.E., Ir, D., Young, B.E., Krebs, N.F., Hernandez, T.L., Barbour, L.A., Frank, D.N., Kroehl, M. and Friedman, J.E. (2020) Gestational Diabetes Is Uniquely Associated with Altered Early Seeding of the Infant Gut Microbiota. Frontiers in Endocrinology, 11, Article 603021. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Liu, H., Wang, J., He, T., Becker, S., Zhang, G., Li, D. and Ma, X. (2018) Butyrate: A Double-Edged Sword for Health? Advances in Nutrition, 9, 21-29. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Feng, W., Ao, H. and Peng, C. (2018) Gut Microbiota, Short-Chain Fatty Acids, and Herbal Medicines. Frontiers in Pharmacology, 9, Article 1354. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Hernández, M.A.G., Canfora, E.E., Jocken, J.W.E. and Blaak, E.E. (2019) The Short-Chain Fatty Acid Acetate in Body Weight Control and Insulin Sensitivity. Nutrients, 11, Article No. 1943. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Tan, J.K., McKenzie, C., Mariño, E., Macia, L. and Mackay, C.R. (2017) Metabolite-Sensing G Protein-Coupled Receptors-Facilitators of Diet-Related Immune Regulation. Annual Review of Immunology, 35, 371-402. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Ziętek, M., Celewicz, Z. and Szczuko, M. (2021) Short-Chain Fatty Acids, Maternal Microbiota and Metabolism in Pregnancy. Nutrients, 13, Article No. 1244. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Bartolomaeus, H., Balogh, A., Yakoub, M., Homann, S., Markó, L., Höges, S., Tsvetkov, D., Krannich, A., Wundersitz, S., Avery, E.G., Haase, N., Kräker, K., Hering, L., Maase, M., Kusche-Vihrog, K., Grandoch, M., Fielitz, J., Kempa, S., Gollasch, M., Zhumadilov, Z., Kozhakhmetov, S., Kushugulo-va, A., Eckardt, K.U., Dechend, R., Rump, L.C., Forslund, S.K., Müller, D.N., Stegbauer, J. and Wilck, N. (2019) Short-Chain Fatty Acid Propionate Protects from Hypertensive Cardiovascular Damage. Circulation, 139, 1407-1421. [Google Scholar] [CrossRef]
|
|
[12]
|
Natarajan, N., Hori, D., Flavahan, S., Steppan, J., Flavahan, N.A., Berkowitz, D.E. and Pluznick, J.L. (2016) Microbial Short Chain Fatty Acid Metabolites Lower Blood Pressure via Endothelial G Protein-Coupled Receptor 41. Physiological Genomics, 48, 826-834. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Chen, J., Li, Y., Tian, Y., Huang, C., Li, D., Zhong, Q. and Ma, X. (2015) Interaction between Microbes and Host Intestinal Health: Modulation by Dietary Nutrients and Gut-Brain-Endocrine-Immune Axis. Current Protein & Peptide Science, 16, 592-603. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Louis, P. and Flint, H.J. (2020) Formation of Propio-nate and Butyrate by the Human Colonic Microbiota. Environmental Microbiology, 19, 29-41. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Trachsel, J., Bayles, D.O., Looft, T., Levine, U.Y. and Allen, H.K. (2016) Function and Phylogeny of Bacterial Butyryl Coenzyme A: Acetate Transferases and Their Diversity in the Proximal Colon of Swine. Applied and Environmental Microbiology, 82, 6788-6798. [Google Scholar] [CrossRef]
|
|
[16]
|
Nicholson, J.K., Holmes, E., Kinross, J., Burcelin, R., Gibson, G., Jia, W. and Pettersson, S. (2012) Host-Gut Microbiota Metabolic Interactions. Science, 336, 1262-1267. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Chang, P.V., Hao, L., Offermanns, S. and Medzhitov, R. (2014) The Microbial Metabolite Butyrate Regulates Intestinal Macrophage Function via Histone Deacetylase Inhibition. Proceedings of the National Academy of Sciences of the United States of America, 111, 2247-2252. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Gio-Batta, M., Sjöberg, F., Jonsson, K., Barman, M., Lundell, A.C., Adlerberth, I., Hesselmar, B., Sandberg, A.S. and Wold, A.E. (2020) Fecal Short Chain Fatty Acids in Children Living on Farms and a Link between Valeric Acid and Protection from Eczema. Scientific Reports, 10, Article No. 22449. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Tayyeb, J.Z., Popeijus, H.E., Mensink, R.P., Konings, M.C.J.M., Mokhtar, F.B.A. and Plat, J. (2020) Short-Chain Fatty Acids (Except Hexanoic Acid) Lower NF-kB Transactivation, Which Rescues Inflammation-Induced Decreased Apolipoprotein A-I Transcription in HepG2 Cells. International Jour-nal of Molecular Sciences, 21, Article No. 5088. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
杨立娜, 李丽, 王胜男, 朱力杰, 蔚彦平, 宋虹, 何余堂, 刘贺. 短链脂肪酸肠道转运吸收研究进展[J]. 中国食品学报, 2022, 22(7): 335-344. [Google Scholar] [CrossRef]
|
|
[21]
|
Martin-Gallausiaux, C., Marinelli, L., Blottière, H.M., Larraufie, P. and Lapaque, N. (2021) SCFA: Mechanisms and Functional Importance in the Gut. Proceedings of the Nu-trition Society, 80, 37-49. [Google Scholar] [CrossRef]
|
|
[22]
|
刘露, 张雁, 魏振承, 邓媛元, 丘银清, 张惠娜. 肠道益生菌体外发酵山药低聚糖产短链脂肪酸的研究[J]. 食品科学技术学报, 2019, 37(4): 49-56.
|
|
[23]
|
Nuriel-Ohayon, M., Neuman, H. and Koren, O. (2016) Microbial Changes during Pregnancy, Birth, and Infancy. Frontiers in Microbiology, 7, Article 1031. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Koren, O., Goodrich, J.K., Cullender, T.C., Spor, A., Laitinen, K., Bäckhed, H.K., Gonzalez, A., Werner, J.J., Angenent, L.T., Knight, R., Bäckhed, F., Isolauri, E., Salminen, S. and Ley, R.E. (2012) Host Remodeling of the Gut Microbiome and Metabolic Changes during Pregnancy. Cell, 150, 470-480. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
刘兴会, 陈锰. 降低中国可避免的孕产妇死亡[J]. 中国实用妇科与产科杂志, 2020, 36(1): 54-56. [Google Scholar] [CrossRef]
|
|
[26]
|
Maher, G.M., McCarthy, F.P., McCarthy, C.M., Kenny, L.C., Kearney, P.M., Khashan, A.S. and O’Keeffe, G.W. (2019) A Perspective on Pre-Eclampsia and Neurodevelopmental Outcomes in the Offspring: Does Maternal Inflammation Play a Role? International Journal of Developmental Neuro-science, 77, 69-76. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Qu, H. and Khalil, R.A. (2020) Vascular Mechanisms and Molecular Targets in Hypertensive Pregnancy and Preeclampsia. American Journal of Physiology-Heart and Circulatory Physiology, 319, H661-H681. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
宋伟, 李光辉. 与肥胖相关的短链脂肪酸水平失衡对妊娠期高血压疾病影响的研究进展[J]. 医学综述, 2021, 27(24): 4805-4810.
|
|
[29]
|
Vieira-Rocha, M.S., Sousa, J.B., Rodri-guez-Rodriguez, P., Morato, M., Arribas, S.M. and Diniz, C. (2020) Insights into Sympathetic Nervous System and GPCR Interplay in Fetal Programming of Hypertension: A Bridge for New Pharmacological Strategies. Drug Discovery Today, 25, 739-747. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
康国彬, 李真, 苗华为, 李霞, 张铁军. 肠道菌群代谢产物短链脂肪酸与高血压的关系和机制[J]. 中华高血压杂志, 2021, 29(8): 718-722. [Google Scholar] [CrossRef]
|
|
[31]
|
Pluznick, J. (2014) A Novel SCFA Receptor, the Mi-crobiota, and Blood Pressure Regulation. Gut Microbes, 5, 202-207. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Sun, M., Wu, W., Chen, L., Yang, W., Huang, X., Ma, C., Chen, F., Xiao, Y., Zhao, Y., Ma, C., Yao, S., Carpio, V.H., Dann, S.M., Zhao, Q., Liu, Z. and Cong, Y. (2018) Microbiota-Derived Short-Chain Fatty Acids Promote Th1 Cell IL-10 Pro-duction to Maintain Intestinal Homeostasis. Nature Communications, 9, Article No. 3555. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Furusawa, Y., Obata, Y., Fukuda, S., Endo, T.A., Nakato, G., Takahashi, D., Nakanishi, Y., Uetake, C., Kato, K., Kato, T., Takahashi, M., Fukuda, N.N., Murakami, S., Miyauchi, E., Hino, S., Atarashi, K., Onawa, S., Fujimura, Y., Lockett, T., Clarke, J.M., Topping, D.L., Tomita, M., Hori, S., Ohara, O., Morita, T., Koseki, H., Kikuchi, J., Honda, K., Hase, K. and Ohno, H. (2013) Commensal Microbe-Derived Butyrate Induces the Differentiation of Colonic Regulatory T Cells. Nature, 504, 446-450. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Salazar Garcia, M.D., Mobley, Y., Henson, J., Davies, M., Skariah, A., Dambaeva, S., Gilman-Sachs, A., Beaman, K., Lampley, C. and Kwak-Kim, J. (2018) Early Pregnancy Immune Bi-omarkers in Peripheral Blood May Predict Preeclampsia. Journal of Reproductive Immunology, 125, 25-31. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Chen, X., Li, P., Liu, M., Zheng, H., He, Y., Chen, M.X., Tang, W., Yue, X., Huang, Y., Zhuang, L., Wang, Z., Zhong, M., Ke, G., Hu, H., Feng, Y., Chen, Y., Yu, Y., Zhou, H. and Huang, L. (2020) Gut Dysbiosis Induces the Development of Pre-Eclampsia through Bacterial Translocation. Gut, 69, 513-522. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Liu, Y.J., Tang, B., Wang, F.C., Tang, L., Lei, Y.Y., Luo, Y., Huang, S.J., Yang, M., Wu, L.Y., Wang, W., Liu, S., Yang, S.M. and Zhao, X.Y. (2020) Parthenolide Ameliorates Co-lon Inflammation through Regulating Treg/Th17 Balance in a Gut Microbiota-Dependent Manner. Theranostics, 10, 5225-5241. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Wang, L., Zhu, Q., Lu, A., Liu, X., Zhang, L., Xu, C., Liu, X., Li, H. and Yang, T. (2017) Sodium Butyrate Suppresses Angiotensin II-Induced Hypertension by Inhibition of Renal (pro)Renin Receptor and Intrarenal Renin-Angiotensin System. Journal of Hypertension, 35, 1899-1908. [Google Scholar] [CrossRef]
|
|
[38]
|
Miyamoto, J., Kasubuchi, M., Nakajima, A., Irie, J., Itoh, H. and Kimura, I. (2016) The Role of Short-Chain Fatty Acid on Blood Pressure Regulation. Current Opinion in Nephrolo-gy and Hypertension, 25, 379-383. [Google Scholar] [CrossRef]
|
|
[39]
|
Aguilar, E.C., Leonel, A.J., Teixeira, L.G., Silva, A.R., Silva, J.F., Pelaez, J.M., Capettini, LS., Lemos, V.S., Santos, R.A. and Alvarez-Leite, J.I. (2014) Butyrate Impairs Ath-erogenesis by Reducing Plaque Inflammation and Vulnerability and Decreasing NFκB Activation. Nutrition, Metabolism and Cardiovascular Diseases, 24, 606-613. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Shi, L.Z., Wang, R., Huang, G., Vogel, P., Neale, G., Green, D.R. and Chi, H. (2011) HIF1α-Dependent Glycolytic Pathway Orchestrates a Metabolic Checkpoint for the Differentia-tion of TH17 and Treg Cells. Journal of Experimental Medicine, 208, 1367-1376. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Frankenthal, D., Hirsh-Yechezkel, G., Boyko, V., Orvieto, R., Ron-El, R., Lerner-Geva, L. and Farhi, A. (2019) The Effect of Body Mass Index (BMI) and Gestational Weight Gain on Ad-verse Obstetrical Outcomes in Pregnancies Following Assisted Reproductive Technology as Compared to Spontaneously Conceived Pregnancies. Obesity Research & Clinical Practice, 13, 150-155. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Santacruz, A., Collado, M.C., García-Valdés, L., Segura, M.T., Martín-Lagos, J.A., Anjos, T., Martí-Romero, M., Lopez, R.M., Florido, J., Campoy, C. and Sanz, Y. (2010) Gut Mi-crobiota Composition Is Associated with Body Weight, Weight Gain and Biochemical Parameters in Pregnant Women. British Journal of Nutrition, 104, 83-92. [Google Scholar] [CrossRef]
|
|
[43]
|
Huart, J., Leenders, J., Taminiau, B., Descy, J., Saint-Remy, A., Daube, G., Krzesinski, J.M., Melin, P., de Tullio, P. and Jouret, F. (2019) Gut Microbiota and Fecal Levels of Short-Chain Fatty Acids Differ Upon 24-Hour Blood Pressure Levels in Men. Hypertension, 74, 1005-1013. [Google Scholar] [CrossRef]
|
|
[44]
|
Chen, Y.S., Shen, L., Mai, R.Q. and Wang, Y. (2014) Levels of microRNA-181b and Plasminogen Activator Inhibitor-1 Are Associated with Hypertensive Disorders Complicating Pregnancy. Experimental and Therapeutic Medicine, 8, 1523-1527. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Ganss, R. (2017) Maternal Metabolism and Vascular Adaptation in Pregnancy: The PPAR Link. Trends in Endocrinology & Metabolism, 28, 73-84. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
常艳玲. 伴随肠道微生物改变的短链脂肪酸促进子痫前期高血压发生的研究[D]: [硕士学位论文]. 上海: 上海交通大学, 2020. https://10.27307/d.cnki.gsjtu.2020.002007
|
|
[47]
|
Cheema, M.U. and Pluznick, J.L. (2019) Gut Microbiota Plays a Central Role to Modulate the Plasma and Fecal Metabolomes in Response to Angiotensin II. Hypertension, 74, 184-193. [Google Scholar] [CrossRef]
|