| [1] | Sung, H., Ferlay, J., Siegel, R.L., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249. https://doi.org/10.3322/caac.21660
 | 
                     
                                
                                    
                                        | [2] | Giese, M.A., Hind, L.E. and Huttenlocher, A. (2019) Neutrophil Plasticity in the Tumor Microenvironment. Blood, 133, 2159-2167. https://doi.org/10.1182/blood-2018-11-844548
 | 
                     
                                
                                    
                                        | [3] | Patel, S., Fu, S., Mastio, J., et al. (2018) Unique Pattern of Neutrophil Migration and Function during Tumor Progression. Na-ture Immunology, 19, 1236-1247. https://doi.org/10.1038/s41590-018-0229-5
 | 
                     
                                
                                    
                                        | [4] | Saini, M., Szczerba, B.M. and Aceto, N. (2019) Circulating Tumor Cell-Neutrophil Tango along the Metastatic Process. Cancer Research, 79, 6067-6073. https://doi.org/10.1158/0008-5472.CAN-19-1972
 | 
                     
                                
                                    
                                        | [5] | 陈海峰, 洪国标. 中性粒细胞与淋巴细胞比值和预后营养指数评估中晚期胰腺癌预后的应用分析[J]. 浙江临床医学, 2021, 23(8): 1163-1165, 1168. | 
                     
                                
                                    
                                        | [6] | Masucci, M.T., Minopoli, M., Del Vecchio, S. and Carriero, M.V. (2020) The Emerging Role of Neutrophil Extracellular Traps (NETs) in Tumor Progression and Metastasis. Frontiers in Immunology, 11, Article 1749. https://doi.org/10.3389/fimmu.2020.01749
 | 
                     
                                
                                    
                                        | [7] | Albrengues, J., Shields, M.A., Ng, D., et al. (2018) Neutrophil Extracellular Traps Produced during Inflammation Awaken Dormant Cancer Cells in Mice. Science, 361, eaao4227. https://doi.org/10.1126/science.aao4227
 | 
                     
                                
                                    
                                        | [8] | Teijeira, Á., Garasa, S., Gato, M., et al. (2020) CXCR1 and CXCR2 Chemokine Receptor Agonists Produced by Tumors Induce Neutrophil Extracellular Traps that Interfere with Immune Cytotoxicity. Immunity, 52, 856-871. https://doi.org/10.1016/j.immuni.2020.03.001
 | 
                     
                                
                                    
                                        | [9] | Park, J., Wysocki, R.W., Amoozgar, Z., et al. (2016) Cancer Cells Induce Metastasis-Supporting Neutrophil Extracellular DNA Traps. Science Translational Medicine, 8, 361ra138. https://doi.org/10.1126/scitranslmed.aag1711
 | 
                     
                                
                                    
                                        | [10] | Snoderly, H.T., Boone, B.A. and Bennewitz, M.F. (2019) Neu-trophil Extracellular Traps in Breast Cancer and beyond: Current Perspectives on NET Stimuli, Thrombosis and Metasta-sis, and Clinical Utility for Diagnosis and Treatment. Breast Cancer Research, 21, Article No. 145. https://doi.org/10.1186/s13058-019-1237-6
 | 
                     
                                
                                    
                                        | [11] | Warnatsch, A., Tsourouktsoglou, T.-D., Branzk, N., et al. (2017) Reactive Oxygen Species Localization Programs Inflammation to Clear Microbes of Different Size. Immunity, 46, 421-432. https://doi.org/10.1016/j.immuni.2017.02.013
 | 
                     
                                
                                    
                                        | [12] | Tohme, S., Yazdani, H.O., Al-Khafaji, A.B., et al. (2016) Neutrophil Extracellular Traps Promote the Development and Progression of Liver Metastases after Surgical Stress. Cancer Research, 76, 1367-1380. https://doi.org/10.1158/0008-5472.CAN-15-1591
 | 
                     
                                
                                    
                                        | [13] | Fonseca, Z., Díaz-Godínez, C., Mora, N., et al. (2018) In-duce Signaling via Raf/MEK/ERK for Neutrophil Extracellular Trap (NET) Formation. Frontiers in Cellular and Infec-tion Microbiology, 8, Article 226. https://doi.org/10.3389/fcimb.2018.00226
 | 
                     
                                
                                    
                                        | [14] | Pieterse, E., Rother, N., Yanginlar, C., et al. (2018) Cleaved N-Terminal Histone Tails Distinguish between NADPH Oxidase (NOX)-Dependent and NOX-Independent Pathways of Neutrophil Extracellular Trap Formation. Annals of the Rheumatic Diseases, 77, 1790-1798. https://doi.org/10.1136/annrheumdis-2018-213223
 | 
                     
                                
                                    
                                        | [15] | Thiam, H.R., Wong, S.L., Qiu, R., et al. (2020) NETosis Proceeds by Cytoskeleton and Endomembrane Disassembly and PAD4-Mediated Chromatin Decondensation and Nu-clear Envelope Rupture. Proceedings of the National Academy of Sciences of the United States of America, 117, 7326-7337. https://doi.org/10.1073/pnas.1909546117
 | 
                     
                                
                                    
                                        | [16] | Sørensen, O.E. and Borregaard, N. (2016) Neutrophil Extracellular Traps—The Dark Side of Neutrophils. Journal of Clinical Investigation, 126, 1612-1620. https://doi.org/10.1172/JCI84538
 | 
                     
                                
                                    
                                        | [17] | Sollberger, G., Tilley, D.O. and Zychlinsky, A. (2018) Neutrophil Extracel-lular Traps: The Biology of Chromatin Externalization. Developmental Cell, 44, 542-553. https://doi.org/10.1016/j.devcel.2018.01.019
 | 
                     
                                
                                    
                                        | [18] | Díaz-Godínez, C., Fonseca, Z., Néquiz, M., et al. (2018) Enta-moeba histolytica Trophozoites Induce a Rapid Non-Classical NETosis Mechanism Independent of NOX2-Derived Re-active Oxygen Species and PAD4 Activity. Frontiers in Cellular and Infection Microbiology, 8, Article 184. https://doi.org/10.3389/fcimb.2018.00184
 | 
                     
                                
                                    
                                        | [19] | Liu, M.-L., Lyu, X. and Werth, V.P. (2021) Recent Progress in the Mechanistic Understanding of NET Formation in Neutrophils. The FEBS Journal, 289, 3954-3966. https://doi.org/10.1111/febs.16036
 | 
                     
                                
                                    
                                        | [20] | Brinkmann, V. (2018) Neutrophil Extracellular Traps in the Second Decade. Journal of Innate Immunity, 10, 414-421. https://doi.org/10.1159/000489829
 | 
                     
                                
                                    
                                        | [21] | Rivera-Franco, M.M., Leon-Rodriguez, E., Torres-Ruiz, J.J., et al. (2020) Neutrophil Extracellular Traps Associate with Clinical Stages in Breast Cancer. Pathology & Oncology Research, 26, 1781-1785. https://doi.org/10.1007/s12253-019-00763-5
 | 
                     
                                
                                    
                                        | [22] | Martins-Cardoso, K., Almeida, V.H., Bagri, K.M., et al. (2020) Neutrophil Extracellular Traps (NETs) Promote Pro-Metastatic Phenotype in Human Breast Cancer Cells through Epithe-lial-Mesenchymal Transition. Cancers, 12, Article No. 1542. https://doi.org/10.3390/cancers12061542
 | 
                     
                                
                                    
                                        | [23] | Yang, C., Wang, Z., Li, L., et al. (2021) Aged Neutrophils form Mitochondria-Dependent Vital NETs to Promote Breast Cancer Lung Metastasis. Journal for ImmunoTherapy of Cancer, 9, e002875. https://doi.org/10.1136/jitc-2021-002875
 | 
                     
                                
                                    
                                        | [24] | Xiao, Y., Cong, M., Li, J., et al. (2021) Cathepsin C Promotes Breast Cancer Lung Metastasis by Modulating Neutrophil Infiltration and Neutrophil Extracellular Trap Formation. Can-cer Cell, 39, 423-437. https://doi.org/10.1016/j.ccell.2020.12.012
 | 
                     
                                
                                    
                                        | [25] | Yang, L., Liu, Q., Zhang, X., et al. (2020) DNA of Neutrophil Ex-tracellular Traps Promotes Cancer Metastasis via CCDC25. Nature, 583, 133-138. https://doi.org/10.1038/s41586-020-2394-6
 | 
                     
                                
                                    
                                        | [26] | Zhu, B., Zhang, X., Sun, S., et al. (2021) NF-κB and Neutrophil Extracellular Traps Cooperate to Promote Breast Cancer Progression and Metastasis. Experimental Cell Research, 405, Article ID: 112707. https://doi.org/10.1016/j.yexcr.2021.112707
 | 
                     
                                
                                    
                                        | [27] | Walker, A.J., West, J., Card, T.R., et al. (2016) When Are Breast Cancer Patients at Highest Risk of Venous Thromboembolism? A Cohort Study Using English Health Care Data. Blood, 127, 849-857. https://doi.org/10.1182/blood-2015-01-625582
 | 
                     
                                
                                    
                                        | [28] | Mauracher, L.M., Posch, F., Martinod, K., et al. (2018) Citrul-linated Histone H3, a Biomarker of Neutrophil Extracellular Trap Formation, Predicts the Risk of Venous Thromboem-bolism in Cancer patients. Journal of Thrombosis and Haemostasis, 16, 508-518. https://doi.org/10.1111/jth.13951
 | 
                     
                                
                                    
                                        | [29] | Cao, W., Zhu, M.-Y., Lee, S.-H., et al. (2021) Modulation of Cellular NAD Attenuates Cancer-Associated Hypercoagulability and Thrombosis via the Inhibition of Tissue Factor and Formation of Neutrophil Extracellular Traps. International Journal of Molecular Sciences, 22, Article No. 12085. https://doi.org/10.3390/ijms222112085
 | 
                     
                                
                                    
                                        | [30] | Gomes, T.V., Rady, C.B.S., Louren, O.A.L, et al. (2019) IL-1β Blockade Attenuates Thrombosis in a Neutrophil Extracellular Trap-Dependent Breast Cancer Model. Frontiers in Im-munology, 10, Article 2088. https://doi.org/10.3389/fimmu.2019.02088
 | 
                     
                                
                                    
                                        | [31] | Leal, A.C., Mizurini, D.M., Gomes, T., et al. (2017) Tu-mor-Derived Exosomes Induce the Formation of Neutrophil Extracellular Traps: Implications For The Establishment of Cancer-Associated Thrombosis. Scientific Reports, 7, Article No. 6438. https://doi.org/10.1038/s41598-017-06893-7
 | 
                     
                                
                                    
                                        | [32] | Hosseinnejad, A., Ludwig, N., Wienkamp, A.-K., et al. (2021) DNase I Functional Microgels for Neutrophil Extracellular Trap Disruption. Biomaterials Science, 10, 85-99. https://doi.org/10.1039/D1BM01591E
 | 
                     
                                
                                    
                                        | [33] | Várady, C.B.S., Oliveira, A.C., Monteiro, R.Q. and Gomes, T. (2021) Recombinant Human DNase I for the Treatment of Cancer-Associated Thrombosis: A Pre-Clinical Study. Thrombosis Research, 203, 131-137. https://doi.org/10.1016/j.thromres.2021.04.028
 | 
                     
                                
                                    
                                        | [34] | Cedervall, J., Dragomir, A., Saupe, F., et al. (2017) Pharma-cological Targeting of Peptidylarginine Deiminase 4 Prevents Cancer-Associated Kidney Injury in Mice. Oncoimmunol-ogy, 6, e1320009. https://doi.org/10.1080/2162402X.2017.1320009
 | 
                     
                                
                                    
                                        | [35] | Biron, B.M., Chung, C.-S., O’brien, X.M., et al. (2017) Cl-Amidine Prevents Histone 3 Citrullination and Neutrophil Extracellular Trap Formation, and Improves Survival in a Murine Sepsis Model. Journal of Innate Immunity, 9, 22-32. https://doi.org/10.1159/000448808
 | 
                     
                                
                                    
                                        | [36] | Zeng, J., Xu, H., Fan, P.-Z., et al. (2020) Kaempferol Blocks Neutrophil Extracellular Traps Formation and Reduces Tumour Metastasis by Inhibiting ROS-PAD4 Pathway. Journal of Cellular and Molecular Medicine, 24, 7590-7599. https://doi.org/10.1111/jcmm.15394
 | 
                     
                                
                                    
                                        | [37] | Yazdani, H.O., Roy, E., Comerci, A.J., et al. (2019) Neutrophil Extracel-lular Traps Drive Mitochondrial Homeostasis in Tumors to Augment Growth. Cancer Research, 79, 5626-5639. https://doi.org/10.1158/0008-5472.CAN-19-0800
 | 
                     
                                
                                    
                                        | [38] | Murthy, P., Singhi, A.D., Ross, M.A., et al. (2019) En-hanced Neutrophil Extracellular Trap Formation in Acute Pancreatitis Contributes to Disease Severity and Is Reduced by Chloroquine. Frontiers in Immunology, 10, Article 28. https://doi.org/10.3389/fimmu.2019.00028
 | 
                     
                                
                                    
                                        | [39] | Liu, J., Zheng, F., Yang, M., et al. (2021) Effect of Aspirin Use on Survival Benefits of Breast Cancer Patients: A Meta-Analysis. Medicine, 100, e26870. https://doi.org/10.1097/MD.0000000000026870
 |