| [1] | Schwenger, K.J., Clermont-Dejean, N. and Allard, J.P. (2019) The Role of the Gut Microbiome in Chronic Liver Disease: The Clinical Evidence Revised. JHEP Reports, 1, 214-226. https://doi.org/10.1016/j.jhepr.2019.04.004
 | 
                     
                                
                                    
                                        | [2] | Miura, K. and Ohnishi, H. (2014) Role of Gut Microbiota and Toll-Like Receptors in Nonalcoholic Fatty Liver Disease. World Journal of Gastroenterology, 20, 7381-7391. https://doi.org/10.3748/wjg.v20.i23.7381
 | 
                     
                                
                                    
                                        | [3] | Rinninella, E., Raoul, P., Cintoni, M., et al. (2019) What Is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms, 7, Article No. 14. https://doi.org/10.3390/microorganisms7010014
 | 
                     
                                
                                    
                                        | [4] | Tilg, H., Adolph, T.E. and Trauner, M. (2022) Gut-Liver Axis: Pathophysiological Concepts and Clinical Implications. Cell Metabolism, 34, 1700-1718. https://doi.org/10.1016/j.cmet.2022.09.017
 | 
                     
                                
                                    
                                        | [5] | Mack, C.L., Adams, D., Assis, D.N., et al. (2020) Diagnosis and Management of Autoimmune Hepatitis in Adults and Children: 2019 Practice Guidance and Guidelines from the American Association for the Study of Liver Diseases. Hepatology, 72, 671-722. https://doi.org/10.1002/hep.31065
 | 
                     
                                
                                    
                                        | [6] | Saccucci, M., Di Carlo, G., Bossu, M., et al. (2018) Autoimmune Diseases and Their Manifestations on Oral Cavity: Diagnosis and Clinical Management. Journal of Immunology Research, 2018, Article ID: 6061825. https://doi.org/10.1155/2018/6061825
 | 
                     
                                
                                    
                                        | [7] | Wei, Y., Li, Y., Yan, L., et al. (2020) Alterations of Gut Microbiome in Autoimmune Hepatitis. Gut, 69, 569-577. https://doi.org/10.1136/gutjnl-2018-317836
 | 
                     
                                
                                    
                                        | [8] | Liwinski, T., Casar, C., Ruehlemann, M.C., et al. (2020) A Dis-ease-Specific Decline of the Relative Abundance of Bifidobacterium in Patients with Autoimmune Hepatitis. Alimentary Pharmacology & Therapeutics, 51, 1417-1428. https://doi.org/10.1111/apt.15754
 | 
                     
                                
                                    
                                        | [9] | Elsherbiny, N.M., Rammadan, M., Hassan, E.A., et al. (2020) Autoimmune Hepatitis: Shifts in Gut Microbiota and Metabolic Pathways among Egyptian Patients. Microorganisms, 8, Article No. 1011. https://doi.org/10.3390/microorganisms8071011
 | 
                     
                                
                                    
                                        | [10] | Ma, L., et al. (2021) Fecal Microbiota Transplantation Controls Progression of Experimental Autoimmune Hepatitis in Mice by Modulating the TFR/TFH Immune Imbalance and Intestinal Microbiota Composition. Frontiers in Immunology, 12, Article ID: 728723. https://doi.org/10.3389/fimmu.2021.728723
 | 
                     
                                
                                    
                                        | [11] | Liu, Q., Tian, H., Kang, Y., et al. (2021) Probiotics Alleviate Autoimmune Hepatitis in Mice through Modulation of Gut Microbiota and Intestinal Permeability. The Journal of Nu-tritional Biochemistry, 98, Article ID: 108863. https://doi.org/10.1016/j.jnutbio.2021.108863
 | 
                     
                                
                                    
                                        | [12] | Zhang, H., Liu, M., Liu, X., et al. (2020) Bifidobacterium animalis ssp. Lactis 420 Mitigates Autoimmune Hepatitis through Regulating Intestinal Barrier and Liver Immune Cells. Frontiers in Immunology, 11, Article ID: 569104. https://doi.org/10.3389/fimmu.2020.569104
 | 
                     
                                
                                    
                                        | [13] | Dyson, J.K., Beuers, U., Jones, D.E.J., et al. (2018) Primary Sclerosing Cholangitis. The Lancet, 391, 2547-2559. https://doi.org/10.1016/S0140-6736(18)30300-3
 | 
                     
                                
                                    
                                        | [14] | Lin, R., Zhou, L., Zhang, J., et al. (2015) Abnormal Intestinal Permeability and Microbiota in Patients with Autoimmune Hepatitis. International Journal of Clinical and Experimental Pathology, 8, 5153-5160. | 
                     
                                
                                    
                                        | [15] | Lou, J., Jiang, Y., Rao, B., et al. (2020) Fecal Microbiomes Distinguish Patients with Autoimmune Hepatitis from Healthy Individuals. Frontiers in Cellular and Infection Microbiology, 10, Article No. 342. https://doi.org/10.3389/fcimb.2020.00342
 | 
                     
                                
                                    
                                        | [16] | Guo, S., Nighot, M., Al-Sadi, R., et al. (2015) Lipopolysaccharide Regulation of Intestinal Tight Junction Permeability Is Mediated by TLR4 Signal Transduction Pathway Activation of FAK and MyD88. The Journal of Immunology, 195, 4999-5010. https://doi.org/10.4049/jimmunol.1402598
 | 
                     
                                
                                    
                                        | [17] | Kim, M.H., Kang, S.G., Park, J.H., et al. (2013) Short-Chain Fatty Acids Activate GPR41 and GPR43 on Intestinal Epithelial Cells to Promote Inflammatory Responses in Mice. Gastroenterology, 145, 396-406e1-10. https://doi.org/10.1053/j.gastro.2013.04.056
 | 
                     
                                
                                    
                                        | [18] | Liu, C., Wang, Y.L., Yang, Y.Y., et al. (2021) Novel Ap-proaches to Intervene Gut Microbiota in the Treatment of Chronic Liver Diseases. FASEB Journal, 35, e21871. https://doi.org/10.1096/fj.202100939R
 | 
                     
                                
                                    
                                        | [19] | Ma, L., Zhang, L., Zhuang, Y., et al. (2022) Lactobacillus Improves the Effects of Prednisone on Autoimmune Hepatitis via Gut Microbiota-Mediated Follicular Helper T Cells. Cell Communication and Signaling, 20, Article No. 83. https://doi.org/10.1186/s12964-021-00819-7
 | 
                     
                                
                                    
                                        | [20] | Yamaguchi, A., Teratani, T., Chu, P.S., et al. (2021) Hepatic Adenosine Triphosphate Reduction through the Short-Chain Fatty Acids-Peroxisome Proliferator-Activated Receptor gamma-Uncoupling Protein 2 Axis Alleviates Immune-Mediated Acute Hepatitis in Inulin-Supplemented Mice. Hepatology Communications, 5, 1555-1570. https://doi.org/10.1002/hep4.1742
 | 
                     
                                
                                    
                                        | [21] | Karlsen, T.H., Folseraas, T., Thorburn, D., et al. (2017) Primary Sclerosing Cholangitis—A Comprehensive Review. Journal of Hepatology, 67, 1298-1323. https://doi.org/10.1016/j.jhep.2017.07.022
 | 
                     
                                
                                    
                                        | [22] | Sabino, J., Vieira-Silva, S., Machiels, K., et al. (2016) Primary Sclerosing Cholangitis Is Characterised by Intestinal Dysbiosis Independent from IBD. Gut, 65, 1681-1689. https://doi.org/10.1136/gutjnl-2015-311004
 | 
                     
                                
                                    
                                        | [23] | Jansen, P.L., Ghallab, A., Vartak, N., et al. (2017) The Ascending Pathophysiology of Cholestatic Liver Disease. Hepatology, 65, 722-738. https://doi.org/10.1002/hep.28965
 | 
                     
                                
                                    
                                        | [24] | Liu, H.X., Keane, R., Sheng, L., et al. (2015) Implications of Microbiota and Bile Acid in Liver Injury and Regeneration. Journal of Hepatology, 63, 1502-1510. https://doi.org/10.1016/j.jhep.2015.08.001
 | 
                     
                                
                                    
                                        | [25] | Bleier, J.I., Katz, S.C., Chaudhry, U.I., et al. (2006) Biliary Ob-struction Selectively Expands and Activates Liver Myeloid Dendritic Cells. The Journal of Immunology, 176, 7189-7195. https://doi.org/10.4049/jimmunol.176.12.7189
 | 
                     
                                
                                    
                                        | [26] | Rakoff-Nahoum, S., Paglino, J., Eslami-Varzaneh, F., et al. (2004) Recognition of Commensal Microflora by Toll-Like Receptors Is Required for Intestinal Homeostasis. Cell, 118, 229-241. https://doi.org/10.1016/j.cell.2004.07.002
 | 
                     
                                
                                    
                                        | [27] | Fukui, H. (2019) Role of Gut Dysbiosis in Liver Diseases: What Have We Learned So Far? Diseases, 7, Article No. 58. https://doi.org/10.3390/diseases7040058
 | 
                     
                                
                                    
                                        | [28] | Nakamoto, N., Sasaki, N., Aoki, R., et al. (2019) Gut Pathobionts Underlie Intestinal Barrier Dysfunction and Liver T Helper 17 Cell Immune Response in Primary Sclerosing Cholangitis. Nature Microbiology, 4, 492-503. https://doi.org/10.1038/s41564-018-0333-1
 | 
                     
                                
                                    
                                        | [29] | Bajer, L., Kverka, M., Kostovcik, M., et al. (2017) Distinct Gut Microbiota Profiles in Patients with Primary Sclerosing Cholangitis and Ulcerative Colitis. World Journal of Gastro-enterology, 23, 4548-4558. https://doi.org/10.3748/wjg.v23.i25.4548
 | 
                     
                                
                                    
                                        | [30] | Lv, L.X., Fang, D.Q., Shi, D., et al. (2016) Alterations and Corre-lations of the Gut Microbiome, Metabolism and Immunity in Patients with Primary Biliary Cirrhosis. Environmental Microbiology, 18, 2272-2286. https://doi.org/10.1111/1462-2920.13401
 | 
                     
                                
                                    
                                        | [31] | Tang, R., Wei, Y., Li, Y., et al. (2018) Gut Microbial Profile Is Altered in Primary Biliary Cholangitis and Partially Restored after UDCA Therapy. Gut, 67, 534-541. https://doi.org/10.1136/gutjnl-2016-313332
 | 
                     
                                
                                    
                                        | [32] | Suri, J., Patwardhan, V. and Bonder, A. (2019) Pharmacologic Management of Primary Sclerosing Cholangitis: What’s in the Pipeline? Expert Review of Gastroenterology & Hepatology, 13, 723-729. https://doi.org/10.1080/17474124.2019.1636647
 | 
                     
                                
                                    
                                        | [33] | Cremers, C.M., Knoefler, D., Vitvitsky, V., et al. (2014) Bile Salts Act as Effective Protein-Unfolding Agents and Instigators of Disulfide Stress in Vivo. Proceedings of the National Academy of Sciences of the United States of America, 111, E1610-E1619. https://doi.org/10.1073/pnas.1401941111
 | 
                     
                                
                                    
                                        | [34] | D’aldebert, E., Biyeyeme Bi Mve, M.J., Mergey, M., et al. (2009) Bile Salts Control the Antimicrobial Peptide Cathelicidin through Nuclear Receptors in the Human Biliary Epithelium. Gastroenterology, 136, 1435-1443. https://doi.org/10.1053/j.gastro.2008.12.040
 | 
                     
                                
                                    
                                        | [35] | Devkota, S. and Chang, E.B. (2015) Interactions between Diet, Bile Acid Metabolism, Gut Microbiota, and Inflammatory Bowel Diseases. Digital Distribution, 33, 351-356. https://doi.org/10.1159/000371687
 | 
                     
                                
                                    
                                        | [36] | Gahan, C.G. and Hill, C. (2014) Listeria Monocytogenes: Survival and Adaptation in the Gastrointestinal Tract. Frontiers in Cellular and Infection Microbiology, 4, Article No. 9. https://doi.org/10.3389/fcimb.2014.00009
 | 
                     
                                
                                    
                                        | [37] | Ridlon, J.M., Kang, D.J., Hylemon, P.B., et al. (2014) Bile Acids and the Gut Microbiome. Current Opinion in Gastroenterology, 30, 332-338. https://doi.org/10.1097/MOG.0000000000000057
 | 
                     
                                
                                    
                                        | [38] | Kisiela, M., Skarka, A., Ebert, B., et al. (2012) Hydroxysteroid Dehydrogenases (HSDs) in Bacteria: A Bioinformatic Perspective. The Journal of Steroid Biochemistry and Molecular Biology, 129, 31-46. https://doi.org/10.1016/j.jsbmb.2011.08.002
 | 
                     
                                
                                    
                                        | [39] | Sayin, S.I., Wahlstrom, A., Felin, J., et al. (2013) Gut Microbiota Regulates Bile Acid Metabolism by Reducing the Levels of Tauro-Beta-Muricholic Acid, a Naturally Occurring FXR Antagonist. Cell Metabolism, 17, 225-235. https://doi.org/10.1016/j.cmet.2013.01.003
 | 
                     
                                
                                    
                                        | [40] | Quinn, R.A., Melnik, A.V., Vrbanac, A., et al. (2020) Global Chemical Effects of the Microbiome Include New Bile-Acid Conjugations. Nature, 579, 123-129. https://doi.org/10.1038/s41586-020-2047-9
 | 
                     
                                
                                    
                                        | [41] | Assis, D.N., Abdelghany, O., Cai, S.Y., et al. (2017) Combina-tion Therapy of All-Trans Retinoic Acid with Ursodeoxycholic Acid in Patients with Primary Sclerosing Cholangitis: A Human Pilot Study. Journal of Clinical Gastroenterology, 51, e11-e16. https://doi.org/10.1097/MCG.0000000000000591
 | 
                     
                                
                                    
                                        | [42] | Watanabe, M., Fukiya, S. and Yokota, A. (2017) Com-prehensive Evaluation of the Bactericidal Activities of Free Bile Acids in the Large Intestine of Humans and Rodents. Journal of Lipid Research, 58, 1143-1152. https://doi.org/10.1194/jlr.M075143
 | 
                     
                                
                                    
                                        | [43] | Mattner, J., Savage, P.B., Leung, P., et al. (2008) Liver Autoimmunity Triggered by Microbial Activation of Natural Killer T Cells. Cell Host & Microbe, 3, 304-315. https://doi.org/10.1016/j.chom.2008.03.009
 | 
                     
                                
                                    
                                        | [44] | Terziroli Beretta-Piccoli, B., Mieli-Vergani, G., Vergani, D., et al. (2019) The Challenges of Primary Biliary Cholangitis: What Is New and What Needs to Be Done. Journal of Au-toimmunity, 105, Article ID: 102328. https://doi.org/10.1016/j.jaut.2019.102328
 | 
                     
                                
                                    
                                        | [45] | Li, Y., Tang, R., Leung, P.S.C., et al. (2017) Bile Acids and In-testinal Microbiota in Autoimmune Cholestatic Liver Diseases. Autoimmunity Reviews, 16, 885-896. https://doi.org/10.1016/j.autrev.2017.07.002
 | 
                     
                                
                                    
                                        | [46] | Terziroli Beretta-Piccoli, B., Mieli-Vergani, G. and Vergani, D. (2022) HLA, Gut Microbiome and Hepatic Autoimmunity. Frontiers in Immunology, 13, Article ID: 980768. https://doi.org/10.3389/fimmu.2022.980768
 |