|
[1]
|
霍明真, 李长红. 慢性肾脏病患者FGF23与PTH及血钙、血磷的关系[J]. 齐齐哈尔医学院学报, 2020, 41(2): 145-147.
|
|
[2]
|
王善志, 朱永俊, 唐文庄, 等. 中国成人及老年人群慢性肾脏病患病率Meta分析[J]. 中国老年学杂志, 2017, 37(21): 5384-5388.
|
|
[3]
|
杨舒贺, 康晓明, 孟庆云, 等. 福辛普利对UUO大鼠肾纤维化组织中Klotho蛋白、Wnt/β-catenin通路及MMP7表达的影响[J]. 黑龙江医药科学, 2019, 42(1): 6-8.
|
|
[4]
|
曾庆敏, 李均. Wnt和Notch信号通路在肾纤维化中的作用研究进展[J]. 中国中西医结合肾病杂志, 2019, 20(12): 1124-1126.
|
|
[5]
|
Liu, I., Xiao, Q., Xiao, J.N., et al. (2022) Wnt/β-Catenin Signalling: Function, Biological Mechanisms, and Therapeutic Opportunities. Signal Transduction and Targeted Therapy, 7, Article No. 3. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Li, S.-S., Sun, Q., Hua, M.-R., et al. (2021) Targeting the Wnt/β-Catenin Signaling Pathway as a Potential Therapeutic Strategy in Renal Tubulointerstitial Fibrosis. Frontiers in Pharmacology, 12, Article ID: 719880. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
肖争. β连环蛋白翻译后修饰与肾间质纤维化[J]. 肾脏病与透析肾移植杂志, 2016, 25(3): 269-273.
|
|
[8]
|
Yu, J.E., Kim, S.-O., Hwang, J.-A., et al. (2021) Phosphorylation of β-Catenin Ser60 by Polo-Like Kinase 1 Drives the Completion of Cytokinesis. EMBO Reports, 22, e51503. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
谢莹, 宋泽庆, 王亚红, 等. LRP5蛋白在纤维化疾病中的作用及机制研究进展[J]. 海南医学, 2022, 33(13): 1727-1731.
|
|
[10]
|
Colozza, G. and Koo, B. (2021) Wnt β-Catenin Signaling: Structure, Assembly and Endocytosis of the Signalosome. Development, Growth & Differentiation, 63, 199-218. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Acebron, S.P. and Niehrs, C. (2016) β-Catenin-Independent Roles of Wnt/LRP6 Signaling. Trends in Cell Biology, 26, 956-967. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Schunk, S.J., Floege, J., Fliser, D., et al. (2021) WNT-β-Catenin Signalling—A Versatile Player in Kidney Injury and Repair. Nature Reviews Nephrology, 11, 172-184. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Feng, Y.-L., Chen, D.-Q., Vaziri, N.D., et al. (2020) Small Molecule Inhibitors of Epithelial-Mesenchymal Transition for the Treatment of Cancer and Fibrosis. Medicinal Research Reviews, 40, 54-78. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Chen, F.T., Chen, L., Li, D., et al. (2022) Relaxin Inhibits Renal Fibrosis and the Epithelial-to-Mesenchymal Transition via the Wnt/β-Catenin Signaling Pathway. Renal Failure, 44, 513-524. [Google Scholar] [CrossRef]
|
|
[15]
|
Lee, E.-J., et al. (2020) Dickkopf-3 in Human Malignant Tumours: A Clinical Viewpoint. Anticancer Research, 40, 5969-5979. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Gröne, E.F., Federico, G., Nelson, P.J., et al. (2017) The Hormetic Functions of Wnt Pathways in Tubular Injury. Pflügers Archiv, 469, 899-906. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Zhou, D., Tan, R.J., Fu, H.Y., et al. (2016) Wnt/β-Catenin Signaling in Kidney Injury and Repair: A Double-Edged Sword. Laboratory Investigation; a Journal of Technical Methods and Pathology, 96, 156-167. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Federico, G., Meister, M., Mathow, D., et al. (2016) Tubular Dickkopf-3 Promotes the Development of Renal Atrophy and Fibrosis. JCI Insight, 1, e84916. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Schunk, S.J., Speer, T., Petrakis, I., et al. (2021) Dickkopf 3-a Novel Biomarker of the “Kidney Injury Continuum”. Nephrology Dialysis Transplantation, 36, 761-767. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
廖永丽, 李均. 基于Hedgehog信号通路的中药抗肾纤维化研究进展[J]. 医学综述, 2021, 27(16): 3137-3142.
|
|
[21]
|
Li, L.Y., Zhou, G., Fu, R., et al. (2021) Polysaccharides Extracted from Balanophora Polyandra Griff (BPP) Ameliorate Renal Fibrosis and EMT via Inhibiting the Hedgehog Pathway. Journal of Cellular and Molecular Medicine, 25, 2828-2840. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Effendi, W. and Nagano, T. (2021) The Hedgehog Signaling Pathway in Idiopathic Pulmonary Fibrosis: Resurrection Time. International Journal of Molecular Sciences, 23, Article No. 171. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
李庆. Hedgehog信号通路在肾纤维化中的研究进展[J]. 医学研究生学报, 2019, 32(10): 1089-1093.
|
|
[24]
|
Kramann, R., Fleig, S.V., et al. (2015) Pharmacological GLI2 Inhibition Prevents Myofibroblast Cell-Cycle Progression and Reduces Kidney Fibrosis. Journal of Clinical Investigation, 125, 2935-2951. [Google Scholar] [CrossRef]
|
|
[25]
|
Smelkinson, M.G. (2017) The Hedgehog Signaling Pathway Emerges as a Pathogenic Target. Journal of Developmental Biology, 5, Article No. 14. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Zhou, D., Tan, R.J. and Liu Y. (2016) Sonic Hedgehog Signaling in Kidney Fibrosis: A Master Communicator. Science China Life Sciences, 59, 920-929. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Schunk, S.J., Floege, J., Fliser, D., et al. (2021) WNT-β-Catenin Signalling—A Versatile Player in Kidney Injury and Repair. Nature Reviews. Nephrology, 17, 172-184. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Longhitano, L., Tibullo, D., Vicario, N., et al. (2021) IGFBP-6/Sonic Hedgehog/TLR4 Signalling Axis Drives Bone Marrow Fibrotic Transformation in Primary Myelofibrosis. Aging, 13, 25055-25071. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Wang, S., et al. (2021) Insulin-Like Growth Factor Binding Proteins in Kidney Disease. Frontiers in Pharmacology, 29, 89-103. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Wang, S.Q., et al. (2018) The Impact of the Glomerular Filtration Rate on the Human Plasma Proteome. Proteomics—Clinical Applications, 12, Article ID: 1700067. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Liso, A., Santina, V., Daniela, C.A.R., et al. (2022) IGFBP-6: At the Crossroads of Immunity, Tissue Repair and Fibrosis. International Journal of Molecular Sciences, 23, Article No. 4358. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
王长江, 王岚, 邹新蓉, 等. Klotho基因调节生长激素分泌机制的研究进展[J]. 中国中西医结合肾病杂志, 2022, 23(7): 643-645.
|
|
[33]
|
Neyra, J.A., Ming, C.H. and Moe, O.W. (2020) Klotho in Clinical Nephrology: Diagnostic and Therapeutic Implications. Clinical Journal of the American Society of Nephrology, 16, 162-176. [Google Scholar] [CrossRef]
|
|
[34]
|
陈静, 章晓燕, 丁小强. Klotho蛋白在慢性肾脏病中作用的研究进展[J]. 中国临床医学, 2018, 25(1): 129-131.
|
|
[35]
|
刘其锋, 缪静龙. Klotho抑制肾间质纤维化的作用及机制[J]. 医学综述, 2019, 25(20): 3985-3986.
|
|
[36]
|
Wu, W.J., et al. (2022) Smad3 Signatures in Renal Inflammation and Fibrosis. International Journal of Biological Sciences, 18, 2795-2806. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
丁华琳, 李扬扬, 于丰源, 等. 达格列净通过Klotho/TGF-β1通路抑制糖尿病肾病大鼠肾纤维化的作用[J]. 山东大学学报(医学版), 2020, 58(3): 75-80.
|
|
[38]
|
曼刘, 春刘, 刚刘. IgA肾病患者肾组织Klotho蛋白与肾纤维化的关系[J]. 吉林医学, 2019, 12(4): 2701-2704.
|
|
[39]
|
陈燕玲, 罗婷, 高昕乐, 等. 碘普罗胺对HK-2细胞凋亡及对Klotho/Wnt/β-Catenin信号通路的影响[J]. 实用医学杂志, 2019, 35(5): 729-733.
|
|
[40]
|
Wang, Q., Ren, D.J., Li, Y.B., et al. (2019) Klotho Attenuates Diabetic Nephropathy in db/db Mice and Ameliorates High Glucose-Induced Injury of Human Renal Glomerular Endothelial Cells. Cell Cycle, 18, 696-707. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
拜霖楠, 程虹, 杨敏, 等. α-klotho蛋白拮抗瘦素损伤小鼠足细胞的实验研究[J]. 中国中西医结合肾病杂志, 2016, 17(7): 573-577.
|
|
[42]
|
Vogt, I., Dieter, H. and Leifheit-Nestler, M. (2019) FGF23 and Phosphate-Cardiovascular Toxins in CKD. Toxins (Basel), 11, Article No. 647. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Mace, M.L., Klaus, O. and Lewin, E. (2020) New Aspects of the Kidney in the Regulation of Fibroblast Growth Factor 23 (FGF23) and Mineral Homeostasis. International Journal of Molecular Sciences, 21, Article No. 8810. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Kawai, M. (2016) The FGF23/Klotho Axis in the Regulation of Mineral and Metabolic Homeostasis. Hormone Molecular Biology and Clinical Investigation, 28, 55-67. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Komaba, H. and Lanske, B. (2018) Role of Klotho in Bone and Implica-tion for CKD. Current Opinion in Nephrology and Hypertension, 27, 298-304. [Google Scholar] [CrossRef]
|
|
[46]
|
Scholze, A., Liu, Y., Pedersen, L., et al. (2014) Soluble α-Klotho and Its Relation to Kidney Function and Fibroblast Growth Factor-23. The Journal of Clinical Endocrinology & Metabolism, 99, E855-E861. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Saha, S., Brigitta, B., Emiliano, P., et al. (2020) An Overview of Nrf2 Sig-naling Pathway and Its Role in Inflammation. Molecules (Basel, Switzerland), 25, Article No. 5474. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Hernandez, L.F., Eguchi, N., Whaley, D., et al. (2022) Anti-Oxidative Therapy in Diabetic Nephropathy. Frontiers in Bioscience (Scholar Edition), 14, Article No. 14. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Yao, H.K., Zhang, W.T., Yang, F., et al. (2022) Discovery of Caffeoylisocitric Acid as a Keap1-Dependent Nrf2 Activator and Its Effects in Mesangial Cells under High Glucose. Journal of Enzyme Inhibition and Medicinal Chemistry, 37, 178-188. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Xing, L.N., Guo, H.J., Meng, S.X., et al. (2021) Klotho Ameliorates Diabetic Nephropathy by Activating Nrf2 Signaling Pathway in Podocytes. Biochemical and Biophysical Research Communications, 534, 450-456. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Lim, S.W., Jin, L., Luo, K., et al. (2017) Klotho Enhances FoxO3-Mediated Manganese Superoxide Dismutase Expression by Negatively Regulating PI3K/AKT Pathway during Tacrolimus-Induced Oxidative Stress. Cell Death & Disease, 8, e2972. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Zeldich, E., Chen, C.-D., Colvin, T.A., et al. (2014) The Neuroprotective Effect of Klotho Is Mediated via Regulation of Members of the Redox System. The Journal of Biological Chemistry, 289, 24700-24715. [Google Scholar] [CrossRef]
|
|
[53]
|
Jiang, W., Xiao, T.L., Han, W.H., et al. (2019) Klotho Inhibits PKCα/p66SHC-Mediated Podocyte Injury in Diabetic Nephropathy. Molecular and Cellular Endocrinology, 494, Article ID: 110490. [Google Scholar] [CrossRef] [PubMed]
|