|
[1]
|
Burdon, J.J. and Silk, J. (1997) Sources and Patterns of Diversity in Plant-Pathogenic Fungi. Phytopathology, 87, 664-669. [Google Scholar] [CrossRef]
|
|
[2]
|
Chen, L., Swenson, N.G., Ji, N., Mi, X., Ren, H., Guo, L. and Ma, K. (2019) Differential Soil Fungus Accumulation and Density Dependence of Trees in a Subtropical Forest. Science, 366, 124-128. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
王科, 刘芳, 蔡磊. 中国农业植物病原菌物常见种属名录[J]. 菌物学报, 2022, 41(3): 361-386.
|
|
[4]
|
Johnson, S.N., Erb, M. and Hartley, S.E. (2016) Roots under Attack: Contrasting Plant Responses to Below- and Aboveground insect Herbivory. The New Phytologist, 210, 413-418. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Wang, R., Wang, Y., Yang, Q., Kang, C. and Li, M. (2018) Unraveling the Characteristics of the Microbial Community and Potential Pathogens in the Rhizosphere Soil of Rehmannia glutinosa with Root Rot Disease. Applied Soil Ecology, 130, 271-279. [Google Scholar] [CrossRef]
|
|
[6]
|
Mendes, R., Garbeva, P. and Raaijmakers, J.M. (2013) The Rhizosphere Microbiome: Significance of Plant Beneficial, Plant Pathogenic, and Human Pathogenic Microorganisms. FEMS Microbiology Reviews, 37, 634-663. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Berendsen, R.L., Vismans, G., Yu, K., Song, Y., de Jonge, R., Burgman, W.P., Burmølle, M., Herschend, J., Bakker, P.A. and Pieterse, C.M. (2018) Disease-Induced Assemblage of a Plant-Beneficial Bacterial Consortium. The ISME Journal, 12, 1496-1507. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Lu, X., Mo, J., Gilliam, F.S., Zhou, G. and Fang, Y. (2010) Effects of Experimental Nitrogen Additions on Plant Diversity in an Old-Growth Tropical Forest. Global Change Biology, 16, 2688-2700. [Google Scholar] [CrossRef]
|
|
[9]
|
Davidson, E.A. (2009) The Contribution of Manure and Fertilizer Nitrogen to Atmospheric Nitrous Oxide Since 1860. Nature Geoscience, 2, 659-662. [Google Scholar] [CrossRef]
|
|
[10]
|
Botez, F. and Postolache, C. (2013) Nitrogen Deposition Impact on Terrestrial Ecosystems. Romanian Biotechnological Letters, 18, 7123-7142.
|
|
[11]
|
Kanakidou, M., Myriokefalitakis, S., Daskalakis, N., Fanourgakis, G.S., Nenes, A., Baker, A.R., Tsigaridis, K. and Mihalopoulos, N. (2016) Past, Present and Future Atmospheric Nitrogen Deposition. Journal of the Atmospheric Sciences, 73, 2039-2047. [Google Scholar] [CrossRef]
|
|
[12]
|
Fowler, D., Coyle, M., Skiba, U., Sutton, M.A., Cape, J.N., Reis, S., Sheppard, L.J., Jenkins, A., Grizzetti, B., Galloway, J.N., Vitousek, P., Leach, A., Bouwman, A.F., Butterbach-Bahl, K., Dentener, F., Stevenson, D., Amann, M. and Voss, M. (2013) The Global Nitrogen Cycle in the Twenty-First Century. Philo-sophical Transactions of the Royal Society of London. Series B, Biological Sciences, 368, Article ID: 20130164. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Dangl, J.L. and Jones, J.D. (2001) Plant Pathogens and Integrated Defence Responses to Infection. Nature, 411, 826-833. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Liu, X., Zhang, Y., Han, W., Tang, A., Shen, J., Cui, Z., Vitousek, P.M., Erisman, J.W., Goulding, K.W., Christie, P., Fangmeier, A. and Zhang, F. (2013) En-hanced Nitrogen Deposition over China. Nature, 494, 459-462. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Zhao, Y., Zhang, L., Chen, Y., Liu, X., Xu, W., Pan, Y. and Duan, L. (2016) Atmospheric Nitrogen Deposition to China: A Model Analysis on Nitrogen Budget and Critical Load Exceedance. Atmospheric Environment, 153, 32-40. [Google Scholar] [CrossRef]
|
|
[16]
|
Galloway, J.N., Dentener, F.J., Capone, D.G., et al. (2004) Nitrogen Cycles: Past, Present, and Future. Biogeochemistry, 70, 153-226. [Google Scholar] [CrossRef]
|
|
[17]
|
Holland, E.A., Holland, E.A., Braswell, B.H., Braswell, B.H., Sulzman, J., Sulzman, J., Lamarque, J.-F. and Lamarque, J. (2005) Nitrogen Deposition onto the United States and Western Europe: Synthesis of Observations and Models. Ecological Applications, 15, 38-57. [Google Scholar] [CrossRef]
|
|
[18]
|
Zhang, L., Jacob, D.J., Knipping, E.M., Kumar, N., Munger, J.W., Carouge, C., Donkelaar, A.V., Wang, Y. and Chen, D. (2012) Ni-trogen Deposition to the United States: Distribution, Sources, and Processes. Atmospheric Chemistry and Physics, 12, 4539-4554. [Google Scholar] [CrossRef]
|
|
[19]
|
Yu, G., Jia, Y., He, N., Zhu, J., Chen, Z., Wang, Q., Piao, S., Liu, X., He, H., Guo, X., Wen, Z., Li, P., Ding, G. and Goulding, K.W. (2019) Stabilization of Atmospheric Nitrogen Deposi-tion in China over the Past Decade. Nature Geoscience, 12, 424-429. [Google Scholar] [CrossRef]
|
|
[20]
|
付伟, 武慧, 赵爱花, 等. 陆地生态系统氮沉降的生态效应: 研究进展与展望[J]. 植物生态学报, 2020, 44(5): 475-493.
|
|
[21]
|
Galloway, J.N., Aber, J.D., Erisman, J.W., et al. (2003) The Nitrogen Cascade. BioScience, 53, 341-356. [Google Scholar] [CrossRef]
|
|
[22]
|
Templer, P.H., Pinder, R.W. and Goodale, C.L. (2012) Effects of Nitrogen Deposition on Greenhouse-Gas Fluxes for Forests and Grasslands of North America. Frontiers in Ecology and the Environment, 10, 547-553. [Google Scholar] [CrossRef]
|
|
[23]
|
Reay, D.S., Dentener, F., Smith, P., Grace, J. and Feely, R.A. (2008) Global Nitro-gen Deposition and Carbon Sinks. Nature Geoscience, 1, 430-437. [Google Scholar] [CrossRef]
|
|
[24]
|
刘婷岩, 郝龙飞, 王续富, 闫海霞, 白淑兰. 氮沉降及菌根真菌对长白落叶松苗木根系构型及根际酶活性的影响[J]. 植物研究, 2021, 41(1): 145-151.
|
|
[25]
|
Fisher, M.C., Henk, D.A., Briggs, C.J., Brownstein, J.S., Madoff, L.C., McCraw, S. and Gurr, S.J. (2012) Emerging Fungal Threats to Animal, Plant and Ecosystem Health. Nature, 484, 186-194. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Borer, E.T., Lind, E.M., Ogdahl, E.J., Seabloom, E.W., Tilman, D., Montgomery, R.A. and Kinkel, L.L. (2015) Food-Web Composition and Plant Diversity Control Foliar Nutrient Content and Stoichiometry. Journal of Ecology, 103, 1432-1441. [Google Scholar] [CrossRef]
|
|
[27]
|
Heckman, R.W., Halliday, F.W., Wilfahrt, P.A. and Mitchell, C.E. (2017) Effects of Native Diversity, Soil Nutrients, and Natural Enemies on Exotic Invasion in Experimental Plant Communities. Ecology, 98, 1409-1418. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Allan, E., van Ruijven, J. and Crawley, M.J. (2010) Foliar Fungal Pathogens and Grassland Biodiversity. Ecology, 91, 2572-2582. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Burdon, J.J., Thrall, P.H. and Ericson, A.L. (2006) The Current and Future Dynamics of Disease in Plant Communities. Annual Review of Phytopathology, 44, 19-39. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Bobbink, R., Hicks, K., Galloway, J.N., Spranger, T., Alkemade, R., Ashmore, M.R., Bustamante, M.M., Cinderby, S., Davidson, E.A., Dentener, F.J., Emmett, B.A., Erisman, J.W., Fenn, M., Gilliam, F.S., Nordin, A., Pardo, L.H. and de Vries, W. (2010) Global Assessment of Nitrogen Deposition Effects on Terrestrial Plant Diversity: A Synthesis. Ecological Applications, 20, 30-59. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Schrijver, A.D., Frenne, P.D., Ampoorter, E., Nevel, L.V., Demey, A., Wuyts, K. and Verheyen, K. (2011) Cumulative nitrogen Input Drives Species Loss in Terrestrial Ecosystems. Global Ecology and Bio-geography, 20, 803-816. [Google Scholar] [CrossRef]
|
|
[32]
|
Isbell, F., Reich, P.B., Tilman, D., Hobbie, S.E., Polasky, S. and Binder, S. (2013) Nutrient Enrichment, Biodiversity Loss, and Consequent Declines in Ecosystem Productivity. Proceedings of the National Academy of Sciences of the United States of America, 110, 11911-11916. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Dodds, P.N. and Rathjen, J.P. (2010) Plant Immunity: Towards an Inte-grated View of Plant-Pathogen Interactions. Nature Reviews Genetics, 11, 539-548. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
胡家欣, 彭思利, 张栋, 葛之葳, 杨楠. 氮添加对不同林龄杨树人工林丛枝菌根真菌群落的影响[J]. 生态环境学报, 2020, 29(9): 1768-1775.
|
|
[35]
|
Ghelardini, L., Pepori, A.L., Luchi, N., Capretti, P. and Santini, A. (2016) Drivers of Emerging Fungal Diseases of Forest Trees. Forest Ecology and Management, 381, 235-246. [Google Scholar] [CrossRef]
|
|
[36]
|
李晴晴, 霍莹莹, 杨静, 李甜甜, 徐福荣, 董鲜. 不同氮素形态配比对三七根腐病的影响[J]. 核农学报, 2022, 36(4): 829-837.
|
|
[37]
|
Cappelli, S.L., Pichon, N.A., Kempel, A. and Allan, E. (2020) Sick Plants in Grassland Communities: A Growth-Defense Trade-Off Is the Main Driver of Fungal Pathogen Abundance. Ecology Letters, 23, 1349-1359. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
郑勇, 贺纪正. 森林土壤微生物对干旱和氮沉降的响应[J]. 应用生态学报, 2020, 31(7): 2464-2472.
|
|
[39]
|
Wang, Y., Chen, Y. and Wu, W. (2020) Potassium and Phosphorus Transport and Signaling in Plants. Journal of Integrative Plant Biology, 63, 34-52. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
杨剑宇, 王艳红, 温国胜, 伊力塔. AMF和模拟氮沉降对加拿大一枝黄花(Solidago canadensis)幼苗生长和生物量积累的影响[J]. 生态学杂志, 2013, 32(11): 2953-2958.
|
|
[41]
|
Veresoglou, S.D., Barto, E.K., Menexes, G. and Rillig, M.C. (2013) Fertilization Affects Se-verity of Disease Caused by Fungal Plant Pathogens. Plant Pathology, 62, 961-969. [Google Scholar] [CrossRef]
|
|
[42]
|
Ishida, T.A. and Nordin, A. (2010) No Evidence That Nitrogen Enrichment Affect Fungal Communities of Vaccinium Roots in Two Contrasting Boreal Forest Types. Soil Biology & Biochemistry, 42, 234-243. [Google Scholar] [CrossRef]
|
|
[43]
|
Strengbom, J., Nordin, A., Näsholm, T. and Ericson, L. (2002) Parasitic Fungus Mediates Change in Nitrogen-Exposed Boreal Forest Vegetation. Journal of Ecology, 90, 61-67. [Google Scholar] [CrossRef]
|
|
[44]
|
Strengbom, J., Witzell, J., Nordin, A. and Ericson, L. (2004) Do Multitrophic Interactions Override N Fertilization Effects on Operophtera Larvae? Oecologia, 143, 241-250. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Chen, J.P., Qin, S., Tang, J., Chen, G., Xie, J., Chen, L., Han, S., Wang, X., Zhu, T., Liu, Y. and Lin, T. (2021) Exogenous Nitrogen Enhances Poplar Resistance to Leaf Herbivory and Pathogen In-fection after Exposure to Soil Cadmium Stress. Ecotoxicology and Environmental Safety, 208, Article ID: 111688. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
汪鹞雄, 李全, 沈益康, 杨强, 张君波, 王艳红, 宋新章. 模拟氮沉降对杉木丛枝菌根真菌侵染率和球囊霉素的影响[J]. 生态学报, 2021, 41(1): 194-201.
|
|
[47]
|
Coley, P.D., Bryant, J.P. and Chapin, F.S. (1985) Resource Availability and Plant Antiherbivore Defense. Science, 230, 895-899. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Gianoli, E. and Salgado-Luarte, C. (2017) Tolerance to Herbivory and the Resource Availability Hypothesis. Biology Letters, 13, 2017-0120. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
王续富, 郝龙飞, 郝嘉鑫, 郝文颖, 包会嘎, 白淑兰. 模拟氮沉降和不同外生菌根真菌侵染对樟子松幼苗生长的影响[J]. 植物研究, 2021, 41(1): 138-144.
|
|
[50]
|
Mitchell, C.E., Tilman, D. and Groth, J.V. (2002) Effects of Grassland Plant Species Diversity, Abundance, and Composition on Foliar Fungal Disease. Ecology, 83, 1713-1726. [Google Scholar] [CrossRef]
|
|
[51]
|
Civitello, D.J., Cohen, J.M., Fatima, H., Halstead, N.T., Liriano, J., McMahon, T.A., Ortega, C.N., Sauer, E.L., Sehgal, T., Young, S. and Rohr, J. (2015) Biodiversity Inhibits Parasites: Broad Evidence for the Dilution Effect. Proceedings of the National Academy of Sciences of the United States of America, 112, 8667-8671. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Power, A.G. and Mitchell, C.E. (2004) Pathogen Spillover in Disease Epidemics. The American Naturalist, 164, S79-S89. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Halliday, F.W., Heckman, R.W., Wilfahrt, P.A. and Mitchell, C.E. (2017) A Multivariate Test of Disease Risk Reveals Conditions Leading to Disease Amplification. Proceedings of the Royal Society B: Biological Sciences, 284, Article ID: 20171340. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Thalineau, E., Fournier, C., Gravot, A., Wendehenne, D., Jeandroz, S. and Truong, H.N. (2018) Nitrogen Modulation of Medicago truncatula Resistance to Aphanomyces euteiches Depends on Plant Genotype. Molecular Plant Pathology, 19, 664-676. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Jeon, J. (2019) Phytobiome as a Potential Factor in Nitrogen-Induced Susceptibility to the Rice Blast Disease. Research in Plant Disease, 25, 103-107. [Google Scholar] [CrossRef]
|
|
[56]
|
张蕊, 王艺, 金国庆, 周志春, 丰忠平. 施氮对木荷3个种源幼苗根系发育和氮磷效率的影响[J]. 生态学报, 2013, 33(12): 3611-3621.
|
|
[57]
|
Zhang, J., Deng, Y., Ge, X., Shi, X., Fan, X., Dong, K., Chen, L., Zhao, N., Gao, Y. and Ren, A. (2022) The Beneficial Effect of Epichloë Endophytes on the Growth of Host Grasses Was Affected by Arbuscular Mycorrhizal Fungi, Pathogenic Fungi and Nitrogen Addition. Environmental and Ex-perimental Botany, 20, 104-979. [Google Scholar] [CrossRef]
|
|
[58]
|
Dordas, C. (2008) Role of Nutrients in Controlling Plant Diseases in Sustainable Agriculture. A Review. Agronomy for Sustainable Development, 28, 33-46. [Google Scholar] [CrossRef]
|
|
[59]
|
Talukder, Z.I., McDonald, A.J. and Price, A.H. (2005) Loci Controlling Partial Resistance to Rice Blast Do Not Show Marked QTL × Environment Interaction When Plant Nitrogen Status Alters Disease Severity. The New Phytologist, 168, 455-464. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Huang, H., Nguyen Thi Thu, T., He, X., Gravot, A., Bernillon, S., Ballini, E. and Morel, J. (2017) Increase of Fungal Pathogenicity and Role of Plant Glutamine in Nitrogen-Induced Susceptibility (NIS) to Rice Blast. Frontiers in Plant Science, 8, Article 265. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Bandau, F., Decker, V.H., Gundale, M.J. and Albrectsen, B.R. (2015) Genotypic Tannin Levels in Populus tremula Impact the Way Nitrogen Enrichment Affects Growth and Allocation Responses for Some Traits and Not for Others. PLOS ONE, 10, e0140971. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Bryant, J.P., Clausen, T.P., Reichardt, P.B., McCarthy, M.C. and Werner, R.A. (2004) Effect of Nitrogen Fertilization upon the Secondary Chemistry and Nutritional Value of Quaking Aspen (Populus tremuloides Michx.) Leaves for the Large Aspen Tortrix (Choristoneura conflictana (Walker)). Oecologia, 73, 513-517. [Google Scholar] [CrossRef]
|
|
[63]
|
Kruger, B.M. and Manion, P.D. (1994) Antifungal Compounds in Aspen: Ef-fect of Water Stress. Botany, 72, 454-460. [Google Scholar] [CrossRef]
|
|
[64]
|
Liu, X., Lu, Y., Zhang, Z. and Zhou, S. (2019) Foliar Fungal Diseases Respond Differently to Nitrogen and Phosphorus Additions in Tibetan Alpine Meadows. Ecological Research, 35, 162-169. [Google Scholar] [CrossRef]
|
|
[65]
|
郭璐瑶, 苗灵凤, 李大东, 向丽珊, 杨帆. 施氮和增温对降香黄檀幼苗生长发育和生理特征的影响[J]. 植物科学学报, 2022, 40(2): 259-268.
|
|
[66]
|
Mitchell, C.E., Reich, P.B., Tilman, D. and Groth, J.V. (2003) Effects of Elevated CO2, Nitrogen Deposition, and Decreased Species Diversity on Foliar Fungal Plant Disease. Global Change Biology, 9, 438-451. [Google Scholar] [CrossRef]
|
|
[67]
|
Wu, Y., Kwak, J., Karst, J., Ni, M., Yan, Y., Lv, X., Xu, J. and Chang, S.X. (2021) Long-Term Nitrogen and Sulfur Deposition Increased Root-Associated Pathogen Diversity and Changed Mutualistic Fungal Diversity in a Boreal Forest. Soil Biology and Biochemistry, 155, 108-163. [Google Scholar] [CrossRef]
|
|
[68]
|
Jung, K., Kwak, J., Gilliam, F.S. and Chang, S.X. (2018) Simulated N and S Deposition Affected Soil Chemistry and Understory Plant Communities in a Boreal Forest in Western Canada. Journal of Plant Ecology, 11, 511-523. [Google Scholar] [CrossRef]
|
|
[69]
|
Kwak, J., Chang, S.X. and Naeth, M.A. (2018) Eleven Years of Simulated Dep-osition of Nitrogen but Not Sulfur Changed Species Composition and Diversity in the Herb Stratum in a Boreal Forest in Western Canada. Forest Ecology and Management, 412, 1-8. [Google Scholar] [CrossRef]
|
|
[70]
|
Liu, X., Lyu, S., Sun, D., Bradshaw, C.J. and Zhou, S. (2017) Species Decline under Nitrogen Fertilization Increases Community-Level Competence of Fungal Diseases. Proceedings of the Royal Society B: Biological Sciences, 284, Article ID: 20162621. [Google Scholar] [CrossRef] [PubMed]
|
|
[71]
|
Liu, X., Chen, F., Lyu, S., Sun, D. and Zhou, S. (2018) Random Species Loss Underestimates Dilution Effects of Host Diversity on Foliar Fungal Diseases under Fertilization. Ecology and Evolution, 8, 1705-1713. [Google Scholar] [CrossRef] [PubMed]
|
|
[72]
|
Karst, J., Wasyliw, J., Birch, J.D., Franklin, J., Chang, S.X. and Erbilgin, N. (2021) Long-Term Nitrogen Addition Does Not Sustain Host Tree Stem Radial Growth but Doubles the Abundance of High-Biomass Ectomycorrhizal Fungi. Global Change Biology, 27, 4125-4138. [Google Scholar] [CrossRef] [PubMed]
|
|
[73]
|
Anderson, S. (2002) The Relationship between Nutrients and Other Elements to Plant Diseases. Spectrum Analytic, Inc., Washington CH, OH, 26-32.
|
|
[74]
|
Brandt, L. and Li, H. (2002) Bank Discrimination in Transition Economies: Ideology, Information or Incentives? Emerging Markets: Finance, 31, 387-413. [Google Scholar] [CrossRef]
|
|
[75]
|
Semchenko, M., Leff, J.W., Lozano, Y.M., Saar, S., Davison, J., Wilkinson, A.N., Jackson, B.G., Pritchard, W.J., De Long, J.R., Oakley, S., Mason, K.E., Ostle, N., Baggs, E.M., Johnson, D., Fierer, N. and Bardgett, R.D. (2018) Fungal Diversity Regulates Plant-Soil Feedbacks in Temperate Grassland. Science Advances, 4, eaau4578. [Google Scholar] [CrossRef] [PubMed]
|
|
[76]
|
Nguyen, D., Boberg, J., Cleary, M., Bruelheide, H., Hönig, L., Koricheva, J. and Stenlid, J. (2017) Foliar Fungi of Betula pendula: Impact of Tree Species Mixtures and Assessment Methods. Scientific Reports, 7, Article No. 41801. [Google Scholar] [CrossRef] [PubMed]
|
|
[77]
|
Suding, K.N., Collins, S.L., Gough, L., Clark, C., Cleland, E.E., Gross, K.L., Milchunas, D.G. and Pennings, S.C. (2005) Functional- and Abundance-Based Mechanisms Explain Diversity Loss Due to N Fertilization. Proceedings of the National Academy of Sciences of the United States of America, 102, 4387-4392. [Google Scholar] [CrossRef] [PubMed]
|
|
[78]
|
Cassman, N.A., Leite, M.F., Pan, Y., de Hollander, M., van Veen, J.A. and Kuramae, E.E. (2016) Plant and Soil Fungal but Not Soil Bacterial Communities Are Linked in Long-Term Fertilized Grassland. Scientific Reports, 6, Article No. 23680. [Google Scholar] [CrossRef] [PubMed]
|
|
[79]
|
Mordecai, E.A. (2011) Pathogen Impacts on Plant Communities: Unifying Theory, Concepts, and Empirical Work. Ecological Monographs, 81, 429-441. [Google Scholar] [CrossRef]
|
|
[80]
|
Anderson, C.A. and Anderson, D.C. (1984) Ambient Temperature and Violent Crime: Test of the Linear and Curvilinear Hypothesis. Journal of Personality and Social Psychology, 46, 91-97. [Google Scholar] [CrossRef]
|
|
[81]
|
Ostfeld, R.S. and Keesing, F. (2012) Effects of Host Diversity on Infec-tious Disease. Annual Review of Ecology, Evolution, and Systematics, 43, 157-182. [Google Scholar] [CrossRef]
|
|
[82]
|
Liu, X., Chen, L., Liu, M., García-Guzmán, G., Gilbert, G.S. and Zhou, S. (2020) Dilution Effect of Plant Diversity on Infectious Diseases: Latitudinal Trend and Biological Context Dependence. Oikos, 129, 457-465. [Google Scholar] [CrossRef]
|
|
[83]
|
Collins, C.D., Bever, J.D. and Hersh, M.H. (2020) Community Context for Mechanisms of Disease Dilution: Insights from Linking Epidemiology and Plant-Soil Feedback Theory. Annals of the New York Academy of Sciences, 1469, 65-85. [Google Scholar] [CrossRef] [PubMed]
|
|
[84]
|
Soonvald, L., Loit, K., Runno-Paurson, E., Astover, A. and Tedersoo, L. (2019) The Role of Long-Term Mineral and Organic Fertilisation Treatment in Changing Pathogen and Symbiont Community Composition in Soil. Applied Soil Ecology, 141, 45-53. [Google Scholar] [CrossRef]
|
|
[85]
|
Elser, J.J., Bracken, M.E., Cleland, E.E., Gruner, D.S., Harpole, W.S., Hillebrand, H., Ngai, J.T., Seabloom, E.W., Shurin, J.B. and Smith, J. (2007) Global Analysis of Nitrogen and Phosphorus Limitation of Primary Producers in Freshwater, Marine and Terrestrial Ecosystems. Ecology Letters, 10, 1135-1142. [Google Scholar] [CrossRef] [PubMed]
|
|
[86]
|
Johnson, N.C. (1993) Can Fertilization of Soil Select Less Mu-tualistic Mycorrhizae? Ecological Applications, 3, 749-757. [Google Scholar] [CrossRef] [PubMed]
|
|
[87]
|
Kuzyakov, Y. and Xu, X. (2013) Competition between Roots and Microorganisms for Nitrogen: Mechanisms and Ecological Relevance. The New Phytologist, 198, 656-669. [Google Scholar] [CrossRef] [PubMed]
|
|
[88]
|
Bogaert, F., Chesnais, Q., Catterou, M., Rambaud, C., Doury, G. and Ameline, A. (2017) How the Use of Nitrogen Fertiliser May Switch Plant Suitability for Aphids: The Case of Miscanthus, a Promising Biomass Crop, and the Aphid Pest Rhopalosiphum maidis. Pest Management Science, 73, 1648-1654. [Google Scholar] [CrossRef] [PubMed]
|
|
[89]
|
Bellin, D., Asai, S., Delledonne, M. and Yoshioka, H. (2013) Nitric Oxide as a Mediator for Defense Responses. Molecular Plant-Microbe Interactions: MPMI, 26, 271-277. [Google Scholar] [CrossRef]
|
|
[90]
|
Van der Heijden, M.G., Bardgett, R.D. and van Straalen, N.M. (2008) The Unseen Majority: Soil Microbes as Drivers of Plant Diversity and Productivity in Terrestrial Ecosystems. Ecology Letters, 11, 296-310. [Google Scholar] [CrossRef] [PubMed]
|
|
[91]
|
Yang, F., Jensen, J.D., Spliid, N.H., Svensson, B., Jacobsen, S., Jørgensen, L.N., et al. (2010) Investigation of the Effect of Nitrogen on Severity of Fusarium Head Blight in Barley. Journal of Proteomics, 73, 743-752. [Google Scholar] [CrossRef] [PubMed]
|
|
[92]
|
Lacroix, C., Seabloom, E.W. and Borer, E.T. (2014) Environmental Nu-trient Supply Alters Prevalence and Weakens Competitive Interactions among Coinfecting Viruses. The New Phytologist, 204, 424-433. [Google Scholar] [CrossRef] [PubMed]
|
|
[93]
|
Liu, X., Zhang, L., Huang, M. and Zhou, S. (2020) Plant Diversity Promotes Soil Fungal Pathogen Richness under Fertilization in an Alpine Meadow. Journal of Plant Ecology, 14, 323-336. [Google Scholar] [CrossRef]
|
|
[94]
|
Gallo, M.E., Amonette, R.L., Lauber, C.L., Sinsabaugh, R.L. and Zak, D.R. (2003) Microbial Community Structure and Oxidative Enzyme Activity in Nitrogen-Amended North Temperate Forest Soils. Microbial Ecology, 48, 218-229. [Google Scholar] [CrossRef] [PubMed]
|
|
[95]
|
Ebeling, A., Strauss, A.T., Adler, P.B., Arnillas, C.A., Barrio, I.C., Biederman, L.A., Borer, E.T., Bugalho, M.N., Caldeira, M.C., Cadotte, M.W., Daleo, P., Eisenhauer, N., Eskelinen, A., Fay, P.A., Firn, J., Graff, P., Hagenah, N., Haider, S., Komatsu, K.J., et al. (2022) Nutrient Enrichment Increases Invertebrate Herbivory and Pathogen Damage in Grasslands. Journal of Ecology, 110, 327-339. [Google Scholar] [CrossRef]
|