|
[1]
|
Bonfili, L., Cecarini, V., Gogoi, O., et al. (2021) Microbiota Modulation as Preventative and Therapeutic Approach in Alzheimer’s Disease. FEBS Journal, 288, 2836-2855. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Long, J.M. and Holtzman, D.M. (2019) Alzheimer Disease: An Update on Pathobiology and Treatment Strategies. Cell, 179, 312-339. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Rusek, M., Pluta, R., Ulamek-Koziol, M., et al. (2019) Ketogenic Diet in Alzheimer’s Disease. International Journal of Molecular Sciences, 20, Article No. 3892. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Liu, S., Gao, J., Zhu, M., et al. (2020) Gut Microbiota and Dysbiosis in Alzheimer’s Disease: Implications for Pathogenesis and Treatment. Molecular Neurobiology, 57, 5026-5043. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Gilbert, J.A., Blaser, M.J., Caporaso, J.G., et al. (2018) Current Understanding of the Human Microbiome. Nature Medicine, 24, 392-400. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Sochocka, M., Donskow-Lysoniewska, K., Diniz, B.S., et al. (2019) The Gut Microbiome Alterations and Inflammation-Driven Pathogenesis of Alzheimer’s Disease—A Critical Review. Molecular Neurobiology, 56, 1841-1851. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Ling, Z., Liu, X., Cheng, Y., et al. (2022) Gut Microbiota and Aging. Critical Reviews in Food Science and Nutrition, 62, 3509-3534. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Askarova, S., Umbayev, B., Masoud, A.R., et al. (2020) The Links between the Gut Microbiome, Aging, Modern Lifestyle and Alzheimer’s Disease. Frontiers in Cellular and Infection Microbiology, 10, Article No. 104. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Tan, J., McKenzie, C., Potamitis, M., et al. (2014) The Role of Short-Chain Fatty Acids in Health and Disease. Advances in Immunology, 121, 91-119. [Google Scholar] [CrossRef]
|
|
[10]
|
Schoeler, M. and Caesar, R. (2019) Dietary Lipids, Gut Microbiota and Lipid Metabolism. Reviews in Endocrine and Metabolic Disorders, 20, 461-472. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Matt, S.M., Allen, J.M., Lawson, M.A., et al. (2018) Butyrate and Dietary Soluble Fiber Improve Neuroinflammation Associated with Aging in Mice. Frontiers in Immunology, 9, Article No. 1832. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Vanmechelen, E., Vanderstichele, H., Davidsson, P., et al. (2000) Quantification of Tau Phosphorylated at Threonine 181 in Human Cerebrospinal Fluid: A Sandwich ELISA with a Synthetic Phosphopeptide for Standardization. Neuroscience Letters, 285, 49-52. [Google Scholar] [CrossRef]
|
|
[13]
|
Rosenberg, R.N., Fu, M. and Lambracht-Washington, D. (2018) Active Full-Length DNA Abeta42 Immunization in 3xTg-AD Mice Reduces Not Only Amyloid Deposition But Also Tau Pathology. Alzheimer’s Research & Therapy, 10, Article No. 115. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Sheng, C., Yang, K., He, B., et al. (2022) Combination of Gut Microbiota and Plasma Amyloid-Beta as a Potential Index for Identifying Preclinical Alzheimer’s Disease: A Cross-Sectional Analysis from the SILCODE Study. Alzheimer’s Research & Therapy, 14, Article No. 35. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Hong, M., Zhukareva, V., Vogelsberg-Ragaglia, V., et al. (1998) Mutation-Specific Functional Impairments in Distinct Tau Isoforms of Hereditary FTDP-17. Science, 282, 1914-1917. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Dong, S., Duan, Y., Hu, Y., et al. (2012) Advances in the Pathogenesis of Alzheimer’s Disease: A Re-Evaluation of Amyloid Cascade Hypothesis. Translational Neurodegeneration, 1, Article No. 18. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Halle, A., Hornung, V., Petzold, G.C., et al. (2008) The NALP3 Inflammasome Is Involved in the Innate Immune Response to Amyloid-Beta. Nature Immunology, 9, 857-865. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Nizami, S., Hall-Roberts, H., Warrier, S., et al. (2019) Microglial Inflammation and Phagocytosis in Alzheimer’s Disease: Potential Therapeutic Targets. British Journal of Pharmacology, 176, 3515-3532. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Varnum, M.M. and Ikezu, T. (2012) The Classification of Microglial Activation Phenotypes on Neurodegeneration and Regeneration in Alzheimer’s Disease Brain. Archivum Immunologiae et Therapiae Experimentalis (Warsz), 60, 251-266. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Parker, A., Fonseca, S. and Carding, S.R. (2020) Gut Microbes and Metabolites as Modulators of Blood-Brain Barrier Integrity and Brain Health. Gut Microbes, 11, 135-157. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Wikoff, W.R., Anfora, A.T., Liu, J., et al. (2009) Metabolomics Analysis Reveals Large Effects of Gut Microflora on Mammalian Blood Metabolites. Proceedings of the National Academy of Sciences of the United States of America, 106, 3698-3703. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Barrett, E., Ross, R.P., O’Toole, P.W., et al. (2012) Gamma-Aminobutyric Acid Production by Culturable Bacteria from the Human Intestine. Journal of Applied Microbiology, 113, 411-417. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Asti, A. and Gioglio, L. (2014) Can a Bacterial Endotoxin Be a Key Factor in the Kinetics of Amyloid Fibril Formation? Journal of Alzheimer’s Disease, 39, 169-179. [Google Scholar] [CrossRef]
|
|
[24]
|
Kahn, M.S., Kranjac, D., Alonzo, C.A., et al. (2012) Prolonged Elevation in Hippocampal Abeta and Cognitive Deficits Following Repeated Endotoxin Exposure in the Mouse. Behavioural Brain Research, 229, 176-184. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Cerovic, M., Forloni, G. and Balducci, C. (2019) Neuroinflammation and the Gut Microbiota: Possible Alternative Therapeutic Targets to Counteract Alzheimer’s Disease? Frontiers in Aging Neuroscience, 11, Article No. 284. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Zhao, Y. and Lukiw, W.J. (2018) Bacteroidetes Neurotoxins and Inflammatory Neurodegeneration. Molecular Neurobiology, 55, 9100-9107. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Maguire, M. and Maguire, G. (2019) Gut Dysbiosis, Leaky Gut, and Intestinal Epithelial Proliferation in Neurological Disorders: Towards the Development of a New Therapeutic Using Amino Acids, Prebiotics, Probiotics, and Postbiotics. Reviews in the Neurosciences, 30, 179-201. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Wang, X., Sun, G., Feng, T., et al. (2019) Sodium Oligomannate Therapeutically Remodels Gut Microbiota and Suppresses Gut Bacterial Amino Acids-Shaped Neuroinflammation to Inhibit Alzheimer’s Disease Progression. Cell Research, 29, 787-803. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Li, F., Wang, Y., Song, X., et al. (2022) The Intestinal Microbial Metabolite Nicotinamide n-Oxide Prevents Herpes Simplex Encephalitis via Activating Mitophagy in Microglia. Gut Microbes, 14, Article ID: 2096989. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Lasry, A., Zinger, A. and Ben-Neriah, Y. (2016) Inflammatory Networks Underlying Colorectal Cancer. Nature Immunology, 17, 230-240. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Muller, P.A., Matheis, F., Schneeberger, M., et al. (2020) Microbiota-Modulated CART(+) Enteric Neurons Autonomously Regulate Blood Glucose. Science, 370, 314-321. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
De Giorgio, R., Guerrini, S., Barbara, G., et al. (2004) Inflammatory Neuropathies of the Enteric Nervous System. Gastroenterology, 126, 1872-1883. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Chalazonitis, A. and Rao, M. (2018) Enteric Nervous System Manifestations of Neurodegenerative Disease. Brain Research, 1693, 207-213. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Bonaz, B., Bazin, T. and Pellissier, S. (2018) The Vagus Nerve at the Interface of the Microbiota-Gut-Brain Axis. Frontiers in Neuroscience, 12, Article No. 49. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Lin, L., Zheng, L.J. and Zhang, L.J. (2018) Neuroinflammation, Gut Microbiome, and Alzheimer’s Disease. Molecular Neurobiology, 55, 8243-8250. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Valles-Colomer, M., Falony, G., Darzi, Y., et al. (2019) The Neuroactive Potential of the Human Gut Microbiota in Quality of Life and Depression. Nature Microbiology, 4, 623-632. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Fung, T.C., Olson, C.A. and Hsiao, E.Y. (2017) Interactions between the Microbiota, Immune and Nervous Systems in Health and Disease. Nature Neuroscience, 20, 145-155. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Spielman, L.J., Gibson, D.L. and Klegeris, A. (2018) Unhealthy Gut, Unhealthy Brain: The Role of the Intestinal Microbiota in Neurodegenerative Diseases. Neurochemistry International, 120, 149-163. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Sochocka, M., Zwolinska, K. and Leszek, J. (2017) The Infectious Etiology of Alzheimer’s Disease. Current Neuropharmacology, 15, 996-1009. [Google Scholar] [CrossRef]
|
|
[40]
|
Pisa, D., Alonso, R., Fernandez-Fernandez, A.M., et al. (2017) Polymicrobial Infections in Brain Tissue from Alzheimer’s Disease Patients. Scientific Reports, 7, Article No. 5559. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Salas, I.H., Burgado, J. and Allen, N.J. (2020) Glia: Victims or Villains of the Aging Brain? Neurobiology of Disease, 143, Article ID: 105008. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Sun, Y.X., Jiang, X.J., Lu, B., et al. (2020) Roles of Gut Microbiota in Pathogenesis of Alzheimer’s Disease and Therapeutic Effects of Chinese Medicine. Chinese Journal of Integrative Medicine, 28, 1048-1056. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Fakhoury, M. (2018) Microglia and Astrocytes in Alzheimer’s Disease: Implications for Therapy. Current Neuropharmacology, 16, 508-518. [Google Scholar] [CrossRef]
|
|
[44]
|
Liu, P., Wu, L., Peng, G., et al. (2019) Altered Microbiomes Distinguish Alzheimer’s Disease from Amnestic Mild Cognitive Impairment and Health in a Chinese Cohort. Brain, Behavior, and Immunity, 80, 633-643. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Zhuang, Z.Q., Shen, L.L., Li, W.W., et al. (2018) Gut Microbiota Is Altered in Patients with Alzheimer’s Disease. Journal of Alzheimer’s Disease, 63, 1337-1346. [Google Scholar] [CrossRef]
|
|
[46]
|
Haran, J.P., Bhattarai, S.K., Foley, S.E., et al. (2019) Alzheimer’s Disease Microbiome Is Associated with Dysregulation of the Anti-Inflammatory P-Glycoprotein Pathway. mBio, 10, e00632-19. [Google Scholar] [CrossRef]
|
|
[47]
|
Giau, V.V., Wu, S.Y., Jamerlan, A., et al. (2018) Gut Microbiota and Their Neuroinflammatory Implications in Alzheimer’s Disease. Nutrients, 10, Article No. 1765. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Borsom, E.M., Lee, K. and Cope, E.K. (2020) Do the Bugs in Your Gut Eat Your Memories? Relationship between Gut Microbiota and Alzheimer’s Disease. Brain Sciences, 10, Article No. 814. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Sherwin, E., Sandhu, K.V., Dinan, T.G., et al. (2016) May the Force Be With You: The Light and Dark Sides of the Microbiota-Gut-Brain Axis in Neuropsychiatry. CNS Drugs, 30, 1019-1041. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Jiang, C., Li, G., Huang, P., et al. (2017) The Gut Microbiota and Alzheimer’s Disease. Journal of Alzheimer’s Disease, 58, 1-15. [Google Scholar] [CrossRef]
|
|
[51]
|
Hu, X., Wang, T. and Jin, F. (2016) Alzheimer’s Disease and Gut Microbiota. Science China Life Sciences, 59, 1006-1023. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Harach, T., Marungruang, N., Duthilleul, N., et al. (2017) Reduction of Abeta Amyloid Pathology in APPPS1 Transgenic Mice in the Absence of Gut Microbiota. Scientific Reports, 7, Article No. 41802. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Abraham, D., Feher, J., Scuderi, G.L., et al. (2019) Exercise and Probiotics Attenuate the Development of Alzheimer’s Disease in Transgenic Mice: Role of Microbiome. Experimental Gerontology, 115, 122-131. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Chen, D., Yang, X., Yang, J., et al. (2017) Prebiotic Effect of Fructooligosaccharides from Morinda officinalis on Alzheimer’s Disease in Rodent Models by Targeting the Microbiota-Gut-Brain Axis. Frontiers in Aging Neuroscience, 9, Article No. 403. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Angelucci, F., Cechova, K., Amlerova, J., et al. (2019) Antibiotics, Gut Microbiota, and Alzheimer’s Disease. Journal of Neuroinflammation, 16, Article No. 108. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Vogt, N.M., Kerby, R.L., Dill-McFarland, K.A., et al. (2017) Gut Microbiome Alterations in Alzheimer’s Disease. Scientific Reports, 7, Article No. 13537. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Saji, N., Niida, S., Murotani, K., et al. (2019) Analysis of the Relationship between the Gut Microbiome and Dementia: A Cross-Sectional Study Conducted in Japan. Scientific Reports, 9, Article No. 1008. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Nguyen, T., Fujimura, Y., Mimura, I., et al. (2018) Cultivable Butyrate-Producing Bacteria of Elderly Japanese Diagnosed with Alzheimer’s Disease. Journal of Microbiology, 56, 760-771. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Pluta, R., Ulamek-Koziol, M., Januszewski, S., et al. (2020) Gut Microbiota and Pro/Prebiotics in Alzheimer’s Disease. Aging (Albany NY), 12, 5539-5550. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Mukherjee, S., Joardar, N., Sengupta, S., et al. (2018) Gut Microbes as Future Therapeutics in Treating Inflammatory and Infectious Diseases: Lessons from Recent Findings. The Journal of Nutritional Biochemistry, 61, 111-128. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Ding, L., et al. (2019) Efficacy of Different Probiotic Protocols in Irritable Bowel Syndrome: A Network Meta-Analysis. Medicine (Baltimore), 98, e16068. [Google Scholar] [CrossRef]
|
|
[62]
|
Ho, L., Ono, K., Tsuji, M., et al. (2018) Protective Roles of Intestinal Microbiota Derived Short Chain Fatty Acids in Alzheimer’s Disease-Type Beta-Amyloid Neuropathological Mechanisms. Expert Review of Neurotherapeutics, 18, 83-90. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Kobayashi, Y., Sugahara, H., Shimada, K., et al. (2017) Therapeutic Potential of Bifidobacterium breve Strain A1 for Preventing Cognitive Impairment in Alzheimer’s Disease. Scientific Reports, 7, Article No. 13510. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Kobayashi, Y., Kuhara, T., Oki, M., et al. (2019) Effects of Bifidobacterium breve A1 on the Cognitive Function of Older Adults with Memory Complaints: A Randomised, Double-Blind, Placebo-Controlled Trial. Beneficial Microbes, 10, 511-520. [Google Scholar] [CrossRef]
|
|
[65]
|
Pistollato, F., Iglesias, R.C., Ruiz, R., et al. (2018) Nutritional Patterns Associated with the Maintenance of Neurocognitive Functions and the Risk of Dementia and Alzheimer’s Disease: A Focus on Human Studies. Pharmacological Research, 131, 32-43. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Akbari, E., Asemi, Z., Daneshvar, K.R., et al. (2016) Effect of Probiotic Supplementation on Cognitive Function and Metabolic Status in Alzheimer’s Disease: A Randomized, Double-Blind and Controlled Trial. Frontiers in Aging Neuroscience, 8, Article No. 256. [Google Scholar] [CrossRef] [PubMed]
|