|
[1]
|
Weger, M., Diotel, N. and Dorsemans, A.C. (2017) Stem Cells and the Circadian Clock. Developmental Biology, 431, 111-123. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Roenneberg, T., Kantermann, T. and Juda, M. (2013) Light and the Human Circadian Clock. In: Kramer, A. and Merrow, M., Eds., Handbook of Experimental Pharmacology, Vol. 217, Springer, Berlin, 311-331. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Hastings, M.H., Maywood, E.S. and Brancaccio, M. (2018) Generation of Circadian Rhythms in the Suprachiasmatic Nucleus. Nature Reviews Neuroscience, 19, 453-469. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Ko, C.H. and Takahashi, J.S. (2006) Molecular Components of the Mammalian Circadian Clock. Human Molecular Genetics, 15, R271-R277. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Vitaterna, M.H., Ko, C.H. and Chang, A.M. (2006) The Mouse Clock Mutation Reduces Circadian Pacemaker Amplitude and Enhances Efficacy of Resetting Stimuli and Phase-Response Curve Amplitude. Proceedings of the National Academy of Sciences of the United States of America, 103, 9327-9332. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Zhang, S., Dai, M. and Wang, X. (2020) Signalling Entrains the Pe-ripheral Circadian Clock. Cellular Signalling, 69, Article ID: 109433. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Tahara, Y. and Shibata, S. (2016) Circadian Rhythms of Liver Physiology and Disease: Experimental and Clinical Evidence. Nature Reviews Gastroenterology & Hepatology, 13, 217-226. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Dierickx, P., Van Laake, L.W. and Geijsen, N. (2018) Cir-cadian Clocks: From Stem Cells to Tissue Homeostasis and Regeneration. EMBO Reports, 19, 18-28. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Sato, T.K., Panda, S. and Miraglia, L.J. (2004) A Functional Ge-nomics Strategy Reveals Rora as a Component of the Mammalian Circadian Clock. Neuron, 43, 527-537. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Preitner, N., Damiola, F. and Lopez-Molina, L. (2002) The Or-phan Nuclear Receptor REV-ERBalpha Controls Circadian Transcription within the Positive Limb of the Mammalian Circadian Oscillator. Cell, 110, 251-260. [Google Scholar] [CrossRef]
|
|
[11]
|
Harding, H.P. and Lazar, M.A. (1993) The Orphan Receptor Rev-ErbA Alpha Activates Transcription via a Novel Response Element. Molecular and Cellular Biology, 13, 3113-3121. [Google Scholar] [CrossRef]
|
|
[12]
|
Zhang, Y., Fang, B. and Emmett, M.J. (2015) Gene Regulation. Dis-crete Functions of Nuclear Receptor Rev-erbα Couple Metabolism to the Clock. Science (New York, NY), 348, 1488-1492. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Mcmahon, D.G., Iuvone, P.M. and Tosini, G. (2014) Circadian Or-ganization of the Mammalian Retina: From Gene Regulation to Physiology and Diseases. Progress in Retinal and Eye Research, 39, 58-76. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Umemura, Y., Koike, N. and Ohashi, M. (2017) Involvement of Posttranscriptional Regulation of Clock in the Emergence of Circadian Clock Oscillation during Mouse Development. Proceedings of the National Academy of Sciences of the United States of America, 114, E7479-E7488. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Tsuchiya, Y., Umemura, Y. and Yagita, K. (2020) Circadian Clock and Cancer: From a Viewpoint of Cellular Differentiation. International Journal of Urology: Official Journal of the Jap-anese Urological Association, 27, 518-524. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Michalopoulos, G.K. and Bhushan, B. (2021) Liver Regeneration: Biological and Pathological Mechanisms and Implications. Nature Reviews Gastroenterology & Hepatology, 18, 40-55. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Gonzales, K.A.U. and Fuchs, E. (2017) Skin and Its Regenerative Powers: An Alliance between Stem Cells and Their Niche. Developmental Cell, 43, 387-401. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Elkhenany, H., Alokda, A. and El-Badawy, A. (2018) Tissue Regeneration: Impact of Sleep on Stem Cell Regenerative Capacity. Life Sciences, 214, 51-61. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Karmakar, S., Deng, L. and He, X.C. (2020) Intestinal Epithelial Re-generation: Active versus Reserve Stem Cells and Plasticity Mechanisms. American Journal of Physiology Gastrointes-tinal and Liver Physiology, 318, G796-G802. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Parasram, K. and Karpowicz, P. (2020) Time after Time: Circadian Clock Regulation of Intestinal Stem Cells. Cellular and Molecular Life Sciences: CMLS, 77, 1267-1288. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Darwich, A.S., Aslam, U. and Ashcroft, D.M. (2014) Me-ta-Analysis of the Turnover of Intestinal Epithelia in Preclinical Animal Species and Humans. Drug Metabolism and Disposition: The Biological Fate of Chemicals, 42, 2016-2022. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Li, B., Lee, C. and Cadete, M. (2019) Impaired Wnt/β-Catenin Path-way Leads to Dysfunction of Intestinal Regeneration during Necrotizing Enterocolitis. Cell Death & Disease, 10, Article No. 743. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Van der Flier, L.G. and Clevers, H. (2009) Stem Cells, Self-Renewal, and Differentiation in the Intestinal Epithelium. Annual Review of Physiology, 71, 241-260. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Barker, N. (2014) Adult Intestinal Stem Cells: Critical Drivers of Epithelial Homeostasis and Regeneration. Nature Reviews Molecular Cell Biology, 15, 19-33. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Jasper, H. (2020) Intestinal Stem Cell Aging: Origins and Interventions. An-nual Review of Physiology, 82, 203-226. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Sancho, E., Batlle, E. and Clevers, H. (2003) Live and Let Die in the Intestinal Epithelium. Current Opinion in Cell Biology, 15, 763-770. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Borgs, L., Beukelaers, P. and Vandenbosch, R. (2009) Cell “Circa-dian” Cycle: New Role for Mammalian Core Clock Genes. Cell Cycle (Georgetown, Tex), 8, 832-837. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Qiu, J.M., Roberts, S.A. and Potten, C.S. (1994) Cell Migration in the Small and Large Bowel Shows a Strong Circadian Rhythm. Epithelial Cell Biology, 3, 137-148.
|
|
[29]
|
Al-Nafussi, A.I. and Wright, N.A. (1982) Circadian Rhythm in the Rate of Cellular Proliferation and in the Size of the Functional Com-partment of Mouse Jejunal Epithelium. Virchows Archiv B, Cell Pathology Including Molecular Pathology, 40, 71-79. [Google Scholar] [CrossRef]
|
|
[30]
|
Karpowicz, P., Zhang, Y. and Hogenesch, J.B. (2013) The Circadian Clock Gates the Intestinal Stem Cell Regenerative State. Cell Reports, 3, 996-1004. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Matsu-Ura, T., Dovzhenok, A. and Aihara, E. (2016) Intercellular Coupling of the Cell Cycle and Circadian Clock in Adult Stem Cell Culture. Molecular Cell, 64, 900-912. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Hoogerwerf, W.A., Hellmich, H.L. and Cornélissen, G. (2007) Clock Gene Expression in the Murine Gastrointestinal Tract: Endogenous Rhythmicity and Effects of a Feeding Regimen. Gastroenterology, 133, 1250-1260. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Hardin, P.E., Hall, J.C. and Rosbash, M. (1990) Feedback of the Drosophila Period Gene Product on Circadian Cycling of Its Messenger RNA Levels. Nature, 343, 536-540. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Peyric, E., Moore, H.A. and Whitmore, D. (2013) Circadian Clock Regula-tion of the Cell Cycle in the Zebrafish Intestine. PLOS ONE, 8, e73209. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Stokes, K., Cooke, A. and Chang, H. (2017) The Circadian Clock Gene BMAL1 Coordinates Intestinal Regeneration. Cellular and Molecular Gastroenterology and Hepatology, 4, 95-114. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Muncan, V., Sansom, O.J. and Tertoolen, L. (2006) Rapid Loss of Intestinal Crypts upon Conditional Deletion of the Wnt/Tcf-4 Target Gene c-Myc. Molecular and Cellular Biology, 26, 8418-8426. [Google Scholar] [CrossRef]
|
|
[37]
|
Parasram, K., Bernardon, N. and Hammoud, M. (2018) Intestinal Stem Cells Exhibit Conditional Circadian Clock Function. Stem Cell Reports, 11, 1287-1301. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Takeo, M., Lee, W. and Ito, M. (2015) Wound Healing and Skin Regeneration. Cold Spring Harbor Perspectives in Medicine, 5, a023267. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Seifert, A.W., Monaghan, J.R. and Voss, S.R. (2012) Skin Re-generation in Adult Axolotls: A Blueprint for Scar-Free Healing in Vertebrates. PLOS ONE, 7, e32875. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Shaw, T.J. and Martin, P. (2009) Wound Repair at a Glance. Journal of Cell Science, 122, 3209-3213. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Pastar, I., Stojadinovic, O. and Yin, N.C. (2014) Epithelialization in Wound Healing: A Comprehensive Review. Advances in Wound Care, 3, 445-464. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Ito, M., Liu, Y. and Yang, Z. (2005) Stem Cells in the Hair Follicle Bulge Contribute to Wound Repair but Not to Homeostasis of the Epidermis. Nature Medicine, 11, 1351-1354. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Geyfman, M., Kumar, V. and Liu, Q. (2012) Brain and Muscle Arnt-Like Protein-1 (BMAL1) Controls Circadian Cell Proliferation and Susceptibility to UVB-Induced DNA Damage in the Epi-dermis. Proceedings of the National Academy of Sciences of the United States of America, 109, 11758-11763. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Wu, G., Ruben, M.D. and Schmidt, R.E. (2018) Population-Level Rhythms in Human Skin with Implications for Circadian Medicine. Proceedings of the National Academy of Sciences of the United States of America, 115, 12313-12318. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Janich, P., Toufighi, K. and Solanas, G. (2013) Human Epidermal Stem Cell Function Is Regulated by Circadian Oscillations. Cell Stem Cell, 13, 745-753. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Spörl, F., Korge, S. and Jürchott, K. (2012) Krüppel-Like Factor 9 Is a Circadian Transcription Factor in Human Epidermis That Controls Proliferation of Keratinocytes. Proceedings of the National Academy of Sciences of the United States of America, 109, 10903-10908. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Lyons, A.B., Moy, L. and Moy, R. (2019) Circadian Rhythm and the Skin: A Review of the Literature. The Journal of Clinical and Aesthetic Dermatology, 12, 42-45.
|
|
[48]
|
Hoyle, N.P., Seinkmane, E. and Putker, M. (2017) Circadian Actin Dynamics Drive Rhythmic Fibroblast Mobilization during Wound Healing. Science Translational Medicine, 9, Article No. 415. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Janich, P., Pascual, G. and Merlos-Suárez, A. (2011) The Circa-dian Molecular Clock Creates Epidermal Stem Cell Heterogeneity. Nature, 480, 209-214. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Kowalska, E., Ripperger, J.A. and Hoegger, D.C. (2013) NONO Couples the Circadian Clock to the Cell Cycle. Proceedings of the National Academy of Sciences of the United States of America, 110, 1592-1599. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Sasaki, H., Hokugo, A. and Wang, L. (2020) Neuronal PAS Do-main 2 (Npas2)-Deficient Fibroblasts Accelerate Skin Wound Healing and Dermal Collagen Reconstruction. Anatomical Record (Hoboken, NJ: 2007), 303, 1630-1641. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Shibuya, Y., Hokugo, A. and Okawa, H. (2022) Therapeutic Downregulation of Neuronal PAS Domain 2 (Npas2) Promotes Surgical Skin Wound Healing. eLife, 11, Article No. 71074. [Google Scholar] [CrossRef]
|
|
[53]
|
Adam, E.K., Quinn, M.E. and Tavernier, R. (2017) Diurnal Cortisol Slopes and Mental and Physical Health Outcomes: A Systematic Review and Meta-Analysis. Psychoneuroendocrinology, 83, 25-41. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Bonnardel, J., T’jonck, W. and Gaublomme, D. (2019) Stel-late Cells, Hepatocytes, and Endothelial Cells Imprint the Kupffer Cell Identity on Monocytes Colonizing the Liver Mac-rophage Niche. Immunity, 51, 638-654.e9. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Shi, J.H. and Line, P.D. (2020) Hallmarks of Postoperative Liver Regeneration: An Updated Insight on the Regulatory Mechanisms. Journal of Gastroenterology and Hepatology, 35, 960-966. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Tao, Y., Wang, M. and Chen, E. (2017) Liver Regeneration: Analysis of the Main Relevant Signaling Molecules. Mediators of Inflammation, 2017, Article ID: 4256352. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Zhang, R., Lahens, N.F. and Balance, H.I. (2014) A Circadian Gene Expression Atlas in Mammals: Implications for Biology and Medicine. Proceedings of the National Academy of Sciences of the United States of America, 111, 16219- 16224. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Ferrell, J.M. and Chiang, J.Y. (2015) Circadian Rhythms in Liver Metabolism and Disease. Acta Pharmaceutica Sinica B, 5, 113-122. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Matsuo, T., Yamaguchi, S. and Mitsui, S. (2003) Control Mecha-nism of the Circadian Clock for Timing of Cell Division in Vivo. Science (New York, NY), 302, 255-259. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Zou, Y., Bao, Q. and Kumar, S. (2012) Four Waves of Hepatocyte Proliferation Linked with Three Waves of Hepatic Fat Accumulation during Partial Hepatectomy-Induced Liver Regener-ation. PLOS ONE, 7, e30675. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Wei, S., Zheng, Q. and Pan, Y. (2022) Interplay between Liver Circadian Rhythm and Regeneration after PHx. Genomics, 114, 1-8. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Jiang, H., Garcia, V. and Yanum, J.A. (2021) Circadian Clock Core Component Bmal1 Dictates Cell Cycle Rhythm of Proliferating Hepatocytes during Liver Regeneration. American Journal of Physiology Gastrointestinal and Liver Physiology, 321, G389-G399. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Gréchez-Cassiau, A., Rayet, B. and Guillaumond, F. (2008) The Circadian Clock Component BMAL1 Is a Critical Regulator of p21WAF1/CIP1 Expression and Hepatocyte Proliferation. The Journal of Biological Chemistry, 283, 4535-4542. [Google Scholar] [CrossRef]
|
|
[64]
|
Ilyin, G.P., Glaise, D. and Gilot, D. (2003) Regulation and Role of p21 and p27 Cyclin-Dependent Kinase Inhibitors during Hepato-cyte Differentiation and Growth. American Journal of Physiology Gastrointestinal and Liver Physiology, 285, G115-G127. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Bellet, M.M., Masri, S. and Astarita, G. (2016) His-tone Deacetylase SIRT1 Controls Proliferation, Circadian Rhythm, and Lipid Metabolism during Liver Regeneration in Mice. The Journal of Biological Chemistry, 291, 23318-23329. [Google Scholar] [CrossRef]
|