|
[1]
|
IPCC (2013) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth As-sessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.
|
|
[2]
|
van Groenigen, J.W., van Kessel, C., Hungate, B.A., Oenema, O., Powlson, D.S. and van Groenigen, K.J. (2017) Se-questering Soil Organic Carbon: A Nitrogen Dilemma. Environmental Science & Technology, 51, 4738-4739. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Maskell, L.C., Smart, S.M., Bullock, J.M., Thompson, K. and Stevens, C.J. (2010) Nitrogen Deposition Causes Widespread Loss of Species Richness in British Habitats. Global Change Biology, 16, 671-679. [Google Scholar] [CrossRef]
|
|
[4]
|
Gao, W.L., Zhao, W., Yang, H., et al. (2015) Effects of Nitrogen Addition on Soil Inorganic N Content and Soil N Mineralization of a Cold-Temperate Coniferous Forest in Great Xing’an Mountains. Acta Ecologica Sinica, 35, 130-136. [Google Scholar] [CrossRef]
|
|
[5]
|
陈美领, 陈浩, 毛庆功, 朱晓敏, 莫江明. 氮沉降对森林土壤磷循环的影响[J]. 生态学报, 2016, 36(16): 4965-4976.
|
|
[6]
|
Magill, A.H., Aber, J.D., Currie, W.S., Nadelhoffer, K.J., Martin, M.E., Mc Dowell, W.H., Melillo, J.M. and Steudler, P. (2004) Ecosystem Response to 15 Years of Chronic Nitrogen Additions at the Harvard Forest LTER, Massachusetts, USA. Forest Ecology and Management, 196, 7-28. [Google Scholar] [CrossRef]
|
|
[7]
|
周佳佳. 常绿阔叶林凋落物对模拟大气氮沉降的响应[D]: [硕士学位论文]. 合肥: 安徽农业大学, 2013.
|
|
[8]
|
Block, C.E., Knoepp, J.D. and Fraterrigo, J.M. (2013) Interactive Effects of Disturbance and Nitrogen Availability on Phosphorus Dynamics of Southern Appalachian Forests. Biogeo-chemistry, 112, 329-342. [Google Scholar] [CrossRef]
|
|
[9]
|
Zhou, K., Lu, X., Mori, T., Mao, Q., Wang, C., Zheng, M., Mo, H., Hou, E. and Mo, J. (2018) Effects of Long-Term Nitrogen Deposition on Phosphorus Leaching Dynamics in a Ma-ture Tropical Forest. Biogeochemistry, 138, 215-224. [Google Scholar] [CrossRef]
|
|
[10]
|
Liu, X., Burslem, D.F.R.P., Taylor, J.D., Taylor, A.F.S., Khoo, E., Majalaplee, N., Helgason, T. and Johnson, D.W. (2018) Partitioning of Soil Phosphorus among Arbuscular and Ectomycorrhizal Trees in Tropical and Subtropical Forests. Ecology Letters, 21, 713-723. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Čapek, P., Manzoni, S., Kaštovská, E., Wild, B., Diáková, K., Bárta, J., Schnecker, J., Biasi, C., Martikainen, P., Alves, R., Guggenberger, G., Gentsch, N., Hugelius, G., Palmtag, J., Mikutta, R., Shibistova, O., Urich, T., Schleper, C., Richter, A. and Šantrůčková, H.A. (2018) Plant-Microbe Interaction Framework Explaining Nutrient Effects on Primary Production. Nature Ecology and Evolution, 2, 1588-1596. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Chen, W., Xu, R., Chen, J., Yuan, X., Zhou, L., Tan, T. and Hu, T. (2018) Consistent Responses of Surface- and Subsurface Soil Fungal Diversity to N Enrichment Are Mediated Dif-ferently by Acidification and Plant Community in a Semi-Arid Grassland. Soil Biology and Biochemistry, 127, 110-119. [Google Scholar] [CrossRef]
|
|
[13]
|
Grman, E. and Robinson, T.M.P. (2013) Resource Availability and Imbalance Affect Plant-Mycorrhizal Interactions: Afield Test of Three Hypotheses. Ecology, 94, 62-71. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Verlinden, M.S., Ven, A., Verbruggen, E., Janssens, I.A., Wallander, H. and Vicca, S. (2018) Favorable Effect of Mycorrhizae on Biomass Production Efficiency Exceeds Their Carbon Cost in a Fertilization Experiment. Ecology, 99, 2525-2534. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
李月蛟, 朱利英, 尹华军, 等. 连续3年夜间增温和施氮对云杉外生菌根及菌根真菌多样性的影响[J]. 生态学报, 2015, 35(9): 2967-2977.
|
|
[16]
|
Hendricks, J.J., Mitchell, R.J., Kuehn, K.A. and Pecot, S.D. (2016) Ectomycorrhizal Fungal Mycelia Turnover in a Longleaf Pine Forest. New Phytologist, 209, 1693-1704. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Zhou, J., Jiang, X., Zhou, B., Zhao, B., Ma, M., Guan, D., Li, J., Chen, S., Cao, F., Shen, D. and Qin, J. (2016) Thirty Four Years of Nitrogen Fertilization Decreases Fungal Diversity and Alters Fungal Community Composition in Black Soil in Northeast China. Soil Biology and Biochemistry, 95, 135-143. [Google Scholar] [CrossRef]
|
|
[18]
|
She, W., Bai, Y., Zhang, Y., Qin, S., Feng, W., Sun, Y., Zheng, J. and Wu, B. (2018) Resource Availability Drives Responses of Soil Microbial Communities to Short-Term Precipitation and Nitrogen Addition in a Desert Shrubland. Frontiers in Microbiology, 9, Article No. 186. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Zhao, A., Liu, L., Chen, B., et al. (2020) Soil Fungal Community Is More Sensitive to Nitrogen Deposition than Increased Rainfall in A Mixed Deciduous Forest of China. Soil Ecology Letters, 2, 20-32. [Google Scholar] [CrossRef]
|
|
[20]
|
Chen, W., Wang, J., Meng, Z., Xu, R., Chen, J., Zhang, Y. and Hu, T. (2020) Fertility-Related Interplay between Fungal Guilds Underlies Plant Richness-Productivity Relationships in Natural Grasslands. New Phytologist, 226, 1129-1143. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Bödeker, I.T.M., Lindahl, B.D., Olson, Å., Clemmensen, K.E. and Treseder, K. (2016) Mycorrhizal and Saprotrophic Fungal Guilds Compete for the Sameorganic Substrates but Affect Decomposition Differently. Function Ecology, 30, 1967-1978. [Google Scholar] [CrossRef]
|
|
[22]
|
闫国永, 卢洁, 邱露瑶, 黄梦娣, 邢亚娟, 王庆贵. AM和EcM菌根特征及其对环境变化的响应[J]. 曲阜师范大学学报(自然科学版), 2022, 48(2): 106-112.
|
|
[23]
|
Godin, A., Brooks, D., Grayston, S.J. and Jones, M.D. (2019) Ectomycorrhizal and Saprotrophic Fungal Communities Vary across mm-Scale Soil Microsites Differing in Phosphatase Activity. Pedosphere, 29, 344-359. [Google Scholar] [CrossRef]
|
|
[24]
|
Näsholm, T., Högberg, P., Franklin, O., Metcalfe, D., Keel, S.G., Campbell, C., Hurry, V., Linder, S. and Högberg, M.N. (2013) Are Ectomycorrhizal Fungi Alleviating or Aggravating Nitrogen Limitation of Tree Growth in Boreal Forests? New Phytologist, 198, 214-221. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Karst, J., Wasyliw, J., Birch, J.D., Franklin, J., Chang, S.X. and Erbilgin, N. (2021) Long-Term Nitrogen Addition Does Not Sustain Host Tree Stem Radial Growth but Doubles the Abundance of High-Biomass Ectomycorrhizal Fungi. Glob Chang Biology, 27, 4125-4138. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Gadgil, R.L. and Gadgil, P.D. (1971) Mycorrhiza and Litter Decomposition. Nature, 233, 133. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Averill, C., Turner, B.L. and Finzi, A.C. (2014) Mycorrhiza-Mediated Competition between Plants and Decomposers Drives Soil Carbon Storage. Nature, 505, 543-545. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Smith, J.M., Whiteside, M.D. and Jones, M.D. (2020) Rapid Nitrogen Loss from Ectomycorrhizal Pine Germinates Signaled by Their Fungal Symbiont. Mycorrhiza, 30, 407-417. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Smith, S.E. and Read, D.J. (2010) Mycorrhizal Symbiosis. Academic Press, London.
|
|
[30]
|
Clemmensen, K.E., Bahr, A., Ovaskainen, O., Dahlberg, A., Ekblad, A., Wallander, H., Stenlid, J., Finlay, R.D., Wardle, D.A. and Lindahl, B.D. (2013) Root Sand Associated Fungi Drive Long-Term Carbon Sequestration in Boreal Forest. Science, 339, 1615-1618. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Abiven, S., Menasseri, S., Angers, D.A. and Leterme, P. (2007) Dynamics of Aggregate Stability and Biological Binding Agents during Decomposition of Organic Materials. European Journal of Soil Science, 58, 239-247. [Google Scholar] [CrossRef]
|
|
[32]
|
Galloway, J.N., Aber, J.D., Erisman, J.W., Seitzinger, S.P., Howarth, R.W., Cowling, E.B. and Cosby, B.J. (2003) The Nitrogen Cascade. BioScience, 53, 341-356. [Google Scholar] [CrossRef]
|
|
[33]
|
Matson, P., Lohse, K.A. and Hall, S.J. (2002) The Globalization of Nitrogen Deposition: Consequences for Terrestrial Ecosystems. AMBIO: A Journal of the Human Environment, 31, 113-119. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Deng, Q., Hui, D., Dennis, S., Reddy, K.C. and Xu, X. (2017) Responses of Terrestrial Ecosystem Phosphorus Cycling to Nitrogen Addition: A Meta-Analysis. Global Ecology and Biogeography, 26, 713-728. [Google Scholar] [CrossRef]
|
|
[35]
|
Deforest, J.L. and Scott, L.G. (2010) Available Organic Soil Phosphorus Has an Important Influence on Microbial Community Composition. Soil Science Society of America Journal, 74, 2059-2066. [Google Scholar] [CrossRef]
|
|
[36]
|
Holzmann, S., Missong, A., Puhlmann, H., Siemens, J., Bol, R., Klumpp, E. and Von Wilpert, K. (2016) Impact of Anthropogenic Induced Nitrogen Input and Liming on Phosphorus Leaching in Forest Soils. Journal of Plant Nutrition and Soil Science, 179, 443-453. [Google Scholar] [CrossRef]
|
|
[37]
|
Yang, K., Zhu, J., Gu, J.C., Yu, L.Z. and Wang, Z.Q. (2015) Changes in Soil Phosphorus Fractions after 9 Years of Continuous Nitrogen Addition in a Larix gmelinii Plantation. Annals of Forest Science, 72, 435-442. [Google Scholar] [CrossRef]
|
|
[38]
|
Yuan, Z.Y. and Chen, H.Y.H. (2015) Decoupling of Nitrogen and Phosphorus in Terrestrial Plants Associated with Global Changes. Nature Climate Change, 5, 465-469. [Google Scholar] [CrossRef]
|
|
[39]
|
Li, Y., et al. (2016) Aggravated Phosphorus Limitation on Biomass Production under Increasing Nitrogen Loading: A Meta-Analysis. Global Chang Biology, 22, 934-943. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Zhu, S., Vivanco, J.M. and Manter, D.K. (2016) Nitrogen Fertilizer Rate Affects Root Exudation, the Rhizosphere Microbiome and Nitrogen-Use-Efficiency of Maize. Applied Soil Ecology, 107, 324-333. [Google Scholar] [CrossRef]
|
|
[41]
|
Ding, W., Cong, W.F. and Lambers, H. (2021) Plant Phosphorus-Acquisition and -Use Strategies Affect Soil Carbon Cycling. Trends in Ecology and Evolution, 36, 899-906. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Hou, E., Wen, D., Jiang, L., Luo, X., Kuang, Y., Lu, X., Chen, C., Allen, K. T., He, X., Huang, X. and Luo, Y. (2021) Latitudinal Patterns of Terrestrial Phosphorus Limitation over the Globe. Ecology Letters, 24, 1420-1431. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Vitousek, P.M., Porder, S., Houlton, B.Z. and Chadwick, O.A. (2010) Terrestrial Phosphorus Limitation: Mechanisms, Implications, and Nitrogen-Phosphorus Interactions. Ecological Applications, 20, 5-15. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Luo, M., et al. (2022) Nitrogen Loading Enhances Phosphorus Limitation in Terrestrial Ecosystems with Implications for Soil Carbon Cycling. Functional Ecology, 36, 2845-2858. [Google Scholar] [CrossRef]
|
|
[45]
|
Fan, Y.X., Lin, F., Yang, L.M., Zhong, X.J., Wang, M.H., Zhou, J.C., Chen, Y.M. and Yang, Y.S. (2018) Decreased Soil Organic P Fraction Associated with Ectomycorrhizal Fungal Activity to Meet Increased P Demand under N Application in a Subtropical Forest Ecosystem. Biology and Fertility of Soils, 54, 149-161. [Google Scholar] [CrossRef]
|
|
[46]
|
Fleischer, K., Rammig, A., De Kauwe, M.G., Walker, A.P., Domingues, T.F., Fuchslueger, L., Garcia, S., Goll, D.S., Grandis, A., Jiang, M., Haverd, V., Hofhansl, F., Holm, J.A., Kruijt, B., Leung, F., Medlyn, B.E., Mercado, L.M., Norby, R.J., Pak, B. and Lapola, D.M. (2019) Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition. Nature Geoscience, 12, 736-741. [Google Scholar] [CrossRef]
|
|
[47]
|
Ye, W.-Q., et al. (1983) Translated, Soil Microbe Seminar (Jap.) Compiled, Soil Microbe Experimentation. Science Press, Beijing.
|
|
[48]
|
Cai, L., Lui, Y.J. and Zhang, K.Q. (2001) The Behavior and Application of Mycorrhiza. Shandong Forestry Science and Technology, 4, 52-54.
|
|
[49]
|
Read, D.J. (1991) Mycorrhizas in Ecosystems. Experientia, 47, 376-391. [Google Scholar] [CrossRef]
|
|
[50]
|
Finlay, R.D., Ek, H., Odham, G., et al. (1989) Uptake, Translocation and Assimilation of 15N-Labelled Ammonium and Nitrate Sources by Intact Ectomycorrhizal Systems of Fagus sylvatica Infected with Paxillin Involutes. New Phytologist, 113, 47-55. [Google Scholar] [CrossRef]
|
|
[51]
|
Franklin, O., Näsholm, T., Högberg, P. and Högberg, M.N. (2014) Forests Trapped in Nitrogen Limitation—An Ecological Market Perspective on Ectomycorrhizal Symbiosis. New Phytologist, 203, 657-666. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Brandrud, T.E. (1998) Ectomycorrhizal Fungi in the NITREX Site at Gardsjn, Sweden; Below and Above-Ground Responses to Experimentally-Changed Nitrogen Inputs 1990-1995. Forest Ecology and Management, 101, 207-214. [Google Scholar] [CrossRef]
|
|
[53]
|
Lilleskov, E.A., Hobbie, E.A. and Horton, T.R. (2011) Conservation of Ectomycorrhizal Fungi: Exploring the Linkages between Functional and Taxonomic Responses to Anthropogenic N Deposition. Fungal Ecology, 4, 174-183. [Google Scholar] [CrossRef]
|
|
[54]
|
Lilleskov, E.A., Kuyper, T.W., Bidartondo, M.I. and Hobbie, E.A. (2019) Atmospheric Nitrogen Deposition Impacts on the Structure and Function of Forest Mycorrhizal Communities: A Review. Environmental Pollution, 246, 148-162. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Clemmensen, K.E., Sørensen, P.L., Michelsen, A., Jonasson, S. and Strom, L. (2008) Site-Dependent N Uptake from N-Form Mixtures by Arctic Plants, Soil Microbes and Ectomycorrhizal Fungi. Oecologia, 155, 771-783. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Kalliokoski, T., Pennanen, T., Nygren, P., Sievanen, R. and Helmisaari, H.S. (2010) Belowground Interspecific Competition in Mixed Boreal Forests: Fine Root and Ectomycorrhiza Characteristics along Stand Developmental Stage and Soil Fertility Gradients. Plant and Soil, 330, 73-89. [Google Scholar] [CrossRef]
|
|
[57]
|
Fernandez, C.W. and Kennedy, P.G. (2015) Revisiting the “Gadgil Effect”: Do Interguild Fungal Interactions Control Carbon Cycling in Forest Soils? New Phytologist, 209, 1382-1394. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Gadgil, P.D. and Gadgil, R.L. (1975) Suppression of Litter Decomposition by Mycorrhizal Roots of Pinus radiata. New Zealand Journal of Forensic Science, 5, 33-41
|
|
[59]
|
Averill, C. and Hawkes, C.V. (2016) Ectomycorrhizal Fungi Slow Carbon Cycling. Ecology Letters, 53, 1689-1699.
|
|
[60]
|
Sterkenburg, E., Clemmensen, K.E., Ekblad, A., Finlay, R.D. and Lindahl, B.D. (2018) Contrasting Effects of Ectomycorrhizal Fungi on Early and Late Stage Decomposition in a Boreal Forest. The ISME Journal, 12, 2187-2197. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Maaroufi, N.I., et al. (2019) Anthropogenic Nitrogen Enrichment Enhances Soil Carbon Accumulation by Impacting Saprotrophs Rather than Ectomycorrhizal Fungal Activity. Global Change Biology, 25, 2900-2914. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Ning, Q., Chen, L., Zhang, C., Ma, D., Li, D., Han, X. and Zhang, J. (2021) Saprotrophic Fungal Communities in Arable Soils Are Strongly Associated with Soil Fertility and Stoichiometry. Applied Soil Ecology, 159, Article ID: 103843. [Google Scholar] [CrossRef]
|
|
[63]
|
Zhong, W., Gu, T., Wang, W., Zhang, B., Lin, X., Huang, Q. and Shen, W. (2010) The Effects of Mineral Fertilizer and Organic Manure on Soil Microbial Community and Diversity. Plant and Soil, 326, 511-522. [Google Scholar] [CrossRef]
|
|
[64]
|
Prévost-Bouré, N.C., Christen, R., Dequiedt, S., Mougel, C., Leliévre, M., Jolivet, C., Shahbazkia, H.R., Guillou, L., Arrouays, D. and Ranjard, L. (2011) Validation and Application of a PCR Primer Set to Quantify Fungal Communities in the Soil Environment by Real-Time Quantitative PCR. PLOS ONE, 6, e24166. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
van der Wal, A., Geydan, T.D., Kuyper, T.W. and de Boer, W. (2013) A Thready Affair: Linking Fungal Diversity and Community Dynamics to Terrestrial Decomposition Processes. FEMS Microbiology Reviews, 37, 477-494. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Song, G., Chen, R., Xiang, W., Yang, F., Zheng, S., Zhang, J., Zhang, J. and Lin, X. (2015) Contrasting Effects of Long-Term Fertilization on the Community of Saprotrophic Fungi and Arbuscular Mycorrhizal Fungi in a Sandy Loam Soil. Plant Soil Environment, 61, 127-136. [Google Scholar] [CrossRef]
|
|
[67]
|
Kyaschenko, J., Clemmensen, K.E., Karltun, E. and Lindahl, B.D. (2017) Below-Ground Organic Matter Accumulation along a Boreal Forest Fertility Gradient Relates to Guild Interaction within Fungal Communities. Ecology Letters, 20, 1546-1555. [Google Scholar] [CrossRef] [PubMed]
|
|
[68]
|
Richardson, A.E. and Simpson, R.J. (2011) Soil Microorganisms Mediating Phosphorus Availability: Phosphorus Plant Physiology. Plant Physiology (Bethesda), 156, 989-996. [Google Scholar] [CrossRef] [PubMed]
|
|
[69]
|
Khalid, M., Du, B., Tan, H., Liu, X., Su, L., Saeed-ur-Rahman and Hui, N. (2021) Phosphorus Elevation Erodes Ectomycorrhizal Community Diversity and Induces Divergence of Saprophytic Community Composition between Vegetation Types. Science of the Total Environment, 793, Article ID: 148502. [Google Scholar] [CrossRef] [PubMed]
|
|
[70]
|
Hu, Y., Duan, C., Fu, D., Wu, X., Yan, K., Fernando, E., Karunarathna, S.C., Promputtha, I., Mortimer, P.E. and Xu, J. (2020) Structure of Bacterial Communities in Phosphorus-Enriched Rhizosphere Soils. Applied Sciences, 10, Article No. 6387. [Google Scholar] [CrossRef]
|
|
[71]
|
Liu, J., Wang, G., Jin, J., Liu, J. and Liu, X. (2011) Effects of Different Concentrations of Phosphorus on Microbial Communities in Soybean Rhizosphere Grown in Two Types of Soils. Annals of Microbiology, 61, 525-534. [Google Scholar] [CrossRef]
|
|
[72]
|
Baldrian, P. (2017) Forest Microbiome: Diversity, Complexity and Dynamics. FEMS Microbiology Reviews, 41, 109-130. [Google Scholar] [CrossRef] [PubMed]
|
|
[73]
|
Zheng, L. and Song, W. (2022) Phosphorus Limitation of Trees Influences Forest Soil Fungal Diversity in China. Forests, 13, 223. [Google Scholar] [CrossRef]
|
|
[74]
|
Tibbett, M., Sanders, F.E. and Cairney, J.W.G. (1998) The Effect of Temperature and Inorganic Phosphorus Supply on Growth and Acid Phosphatase Production in Arctic and Temperate Strains of Ectomycorrhizal Hebeloma spp. in Axenic Culture. Mycological Research, 102, 129-135. [Google Scholar] [CrossRef]
|
|
[75]
|
Zak, D.R., Pellitier, P.T., Argiroff, W., Castillo, B., James, T.Y., Nave, L.E., et al. (2019) Exploring the Role of Ectomycorrhizal Fungi in Soil Carbon Dynamics. New Phytologist, 223, 33-39. [Google Scholar] [CrossRef] [PubMed]
|
|
[76]
|
Burke, D.J., Smemo, K.A. and Hewins, C.R. (2014) Ectomycorrhizal Fungi Isolated from Old-Growth Northern Hardwood Forest Display Variability in Extracellular Enzyme Activity in the Presence of Plant Litter. Soil Biology and Biochemistry, 68, 219-222. [Google Scholar] [CrossRef]
|
|
[77]
|
de Witte, L.C., Rosenstock, N.P., van der Linde, S. and Braun, S. (2017) Nitrogen Deposition Changes Ectomycorrhizal Communities in Swiss Beech Forests. Science of the Total Environment, 605, 1083-1096. [Google Scholar] [CrossRef] [PubMed]
|