[1]
|
中华预防医学会感染性疾病防控分会, 中华医学会感染病学分会. 肾综合征出血热防治专家共识[J]. 中华传染病杂志, 2021, 39(5): 257-265.
|
[2]
|
国家卫生健康委员会. 2019年全国法定传染病疫情概况[EB/OL].
http://www.nhc.gov.cn/jkj/s3578/202004/b1519e1bc1a944fc8ec176db600f68d1.shtml, 2020-04-20.
|
[3]
|
国家卫生健康委员会. 2020年全国法定传染病疫情概况[EB/OL].
http://www.nhc.gov.cn/jkj/s3578/202103/f1a448b7df7d4760976fea6d55834966.shtml, 2021-03-12.
|
[4]
|
国家卫生健康委员会. 2021年全国法定传染病疫情概况[EB/OL].
http://www.nhc.gov.cn/jkj/s3578/202204/4fd88a291d914abf8f7a91f6333567e1.shtml, 2022-04-22.
|
[5]
|
王芹, 李建东, 张全福, 等. 2014年全国肾综合征出血热监测总结和疫情分析[J]. 疾病监测, 2016, 31(3): 192-199.
|
[6]
|
王芹, 曲靖, 张全福, 等. 2013年全国肾综合征出血热疫情及监测分析[J]. 疾病监测, 2015, 30(6): 440-447.
|
[7]
|
白晶晶, 王晓南, 官旭华, 等. 876例肾综合征出血热患者的流行病学和临床特征的回顾性分析[J]. 中华疾病控制杂志, 2017, 21(6): 594-597.
|
[8]
|
刘泽富, 白雪帆, 何文革, 杨为松. 肾综合征出血热2263例[J]. 中华传染病杂志, 2003(5): 60-63.
|
[9]
|
姜泓, 黄长形, 白雪帆, 等. 《肾综合征出血热防治专家共识》要点解读[J]. 中华传染病杂志, 2021, 39(8): 461-463.
|
[10]
|
Fajgenbaum, D.C. and June, C.H. (2020) Cytokine Storm. The New England Journal of Medicine, 383, 2255-2273.
https://doi.org/10.1056/NEJMra2026131
|
[11]
|
Garanina, E., Martynova, E., Davidyuk, Y., et al. (2019) Cytokine Storm Combined with Humoral Immune Response Defect in Fatal Hemorrhagic Fever with Renal Syndrome Case, Tatarstan, Russia. Viruses, 11, Article No. 601.
https://doi.org/10.3390/v11070601
|
[12]
|
Outinen, T.K., Makela, S., Porsti, I., et al. (2021) Severity Biomarkers in Puumala Hantavirus Infection. Viruses, 14, Article No. 45. https://doi.org/10.3390/v14010045
|
[13]
|
Martynova, E., Davidyuk, Y., Kabwe, E., et al. (2021) Cytokine, Chemokine, and Metalloprotease Activation in the Serum of Patients with Nephropathia Epidemica from the Republic of Tatarstan and the Republic of Mordovia, Russia. Pathogens, 10, Article No. 527. https://doi.org/10.3390/pathogens10050527
|
[14]
|
Shakirova, V., Khaertynova, I., Markelova, M., et al. (2022) Serum Cytokine Alterations Associated with Age of Patients with Nephropathia Epidemica. BioMed Re-search International, 2022, Article ID: 4685288.
https://doi.org/10.1155/2022/4685288
|
[15]
|
Korva, M., Rus, K.R., Pavletic, M., et al. (2019) Characterization of Biomarker Levels in Crimean-Congo Hemorrhagic Fever and Hantavirus Fever with Renal Syndrome. Viruses, 11, Ar-ticle No. 686. https://doi.org/10.3390/v11080686
|
[16]
|
Maleki, K.T., Tauriainen, J., Garcia, M., et al. (2021) MAIT Cell Activation Is Associated with Disease Severity Markers in Acute Hantavirus Infection. Cell Reports Medicine, 2, Article ID: 100220.
https://doi.org/10.1016/j.xcrm.2021.100220
|
[17]
|
Tang, K., Zhang, C., Zhang, Y., et al. (2019) Elevated Plasma Interleukin 34 Levels Correlate with Disease Severity-Reflecting Parameters of Patients with Haemorrhagic Fever with Renal Syndrome. Infectious Diseases (London), 51, 847-853. https://doi.org/10.1080/23744235.2019.1672887
|
[18]
|
Khaiboullina, S.F., Martynova, E.V., Khamidullina, Z.L., et al. (2014) Upregulation of IFN-γ and IL-12 Is Associated with a Milder Form of Hantavirus Hemorrhagic Fever with Renal Syndrome. European Journal of Clinical Microbiology & Infectious Diseases: Official Publication of the European Society of Clinical Microbiology, 33, 2149-2156.
https://doi.org/10.1007/s10096-014-2176-x
|
[19]
|
Guo, J., Guo, X., Wang, Y., et al. (2017) Cytokine Response to Hantaan Virus Infection in Patients with Hemorrhagic Fever with Renal Syndrome. Journal of Medical Virology, 89, 1139-1145. https://doi.org/10.1002/jmv.24752
|
[20]
|
Outinen, T.K., Makela, S.M., Ala-Houhala, I.O., et al. (2010) The Severity of Puumala Hantavirus Induced Nephropathia Epidemica Can Be Better Evaluated Using Plasma Inter-leukin-6 than C-Reactive Protein Determinations. BMC Infectious Diseases, 10, Article No. 132. https://doi.org/10.1186/1471-2334-10-132
|
[21]
|
Maleki, K.T., García, M., Iglesias, A., et al. (2019) Severity and Outcome of Hantavirus Pulmonary Syndrome Marked by Increased Serum Levels of IL-6 and Intestinal Fatty Ac-id-Binding Protein. Journal of Infectious Diseases, 219, 1832-1840.
|
[22]
|
Ferro, T., Neumann, P., Gertzberg, N., et al. (2000) Protein Kinase C-Alpha Mediates Endothelial Barrier Dysfunction Induced by TNF-Alpha. The American Journal of Physiology-Lung Cellular and Molecular Physiology, 278, L1107-L1117. https://doi.org/10.1152/ajplung.2000.278.6.L1107
|
[23]
|
Desai, T.R., Leeper, N.J., Hynes, K.L., et al. (2002) In-terleukin-6 Causes Endothelial Barrier Dysfunction via the Protein Kinase C Pathway. Journal of Surgical Research, 104, 118-123. https://doi.org/10.1006/jsre.2002.6415
|
[24]
|
Wang, X., Chen, Q.Z., Zan, Y.X., et al. (2020) Exosomal miR-145-5p Derived from Orthohantavirus-Infected Endothelial Cells Inhibits HTNV Infection. FASEB Journal, 34, 13809-13825. https://doi.org/10.1096/fj.202001114R
|