|
[1]
|
Risebro, C.A., Vieira, J.M., Klotz, L., et al. (2015) Characterisation of the Human Embryonic and Foetal Epicardium during Heart Development. Development, 142, 3630-3636. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Ganassi, M., Zammit, P.S. and Hughes, S.M. (2021) Isolation of Myofibres and Culture of Muscle Stem Cells from Adult Zebrafish. Bio-Protocol, 11, e4149. [Google Scholar] [CrossRef]
|
|
[3]
|
Ramjee, V., Li, D., Manderfield, L.J., et al. (2017) Epicardial YAP/TAZ Orchestrate an Immunosuppressive Response Following Myocardial Infarction. Journal of Clinical Investigation, 127, 899-911. [Google Scholar] [CrossRef]
|
|
[4]
|
Vagnozzi, R.J., Molkentin, J.D. and Houser, S.R. (2018) New Myocyte Formation in the Adult Heart: Endogenous Sources and Therapeutic Implications. Circulation Research, 123, 159-176. [Google Scholar] [CrossRef]
|
|
[5]
|
Forte, E., Furtado, M.B. and Rosenthal, N. (2018) The Interstitium in Cardiac Repair: Role of the Immune-Stromal Cell Interplay. Nature Reviews Cardiology, 15, 601-616. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Jang, J., Song, G., Pettit, S.M., et al. (2022) Epicardial HDAC3 Promotes Myocardial Growth through a Novel MicroRNA Pathway. Circulation Research, 131, 151-164. [Google Scholar] [CrossRef]
|
|
[7]
|
Tandon, P., Wilczewski, C.M., Williams, C.E., et al. (2016) The Lhx9-Integrin Pathway Is Essential for Positioning of the Proepicardial Organ. Development, 143, 831-840. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Lie-Venema, H., van den Akker, N.M., Bax, N.A., et al. (2007) Origin, Fate, and Function of Epicardium-Derived Cells (EPDCs) in Normal and Abnormal Cardiac Development. Scientific World Journal, 7, 1777-1798. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Bargehr, J., Ong, L.P., Colzani, M., et al. (2019) Epicardial Cells De-rived from Human Embryonic Stem Cells Augment Cardiomyocyte-Driven Heart Regeneration. Nature Biotechnology, 37, 895-906. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Blom, J.N. and Feng, Q. (2018) Cardiac Repair by Epicardial EMT: Current Targets and a Potential Role for the Primary Cilium. Pharmacology & Therapeutics, 186, 114-129. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Kikuchi, K., Holdway, J.E., Werdich, A.A., et al. (2010) Primary Contribution to Zebrafish Heart Regeneration by Gata4(+) Cardiomyocytes. Nature, 464, 601-605. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Duim, S.N., Kurakula, K., Goumans, M.J., et al. (2015) Cardiac Endo-thelial Cells Express Wilms’ Tumor-1: Wt1 Expression in the Developing, Adult and Infarcted Heart. Journal of Mo-lecular and Cellular Cardiology, 81, 127-135. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Tan, J.J., Guyette, J.P., Miki, K., et al. (2021) Human iPS-Derived Pre-Epicardial Cells Direct Cardiomyocyte Aggregation Expansion and Organization in Vitro. Nature Communications, 12, Article No. 4997. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Rui, L., Yu, N., Hong, L., et al. (2014) Extending the Time Window of Mammalian Heart Regeneration by Thymosin Beta 4. Journal of Cellular and Molecular Medicine, 18, 2417-2424. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Pipes, G.T. and Yang, J. (2016) Cardioprotection by Thymosin Beta 4. Vitamins and Hormones, 102, 209-226. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Rossdeutsch, A., Smart, N. and Riley, P.R. (2008) Thymosin beta4 and Ac-SDKP: Tools to Mend a Broken Heart. Journal of Molecular Medicine (Berl), 86, 29-35. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Maselli, D., Matos, R.S., Johnson, R.D., et al. (2022) Epicardial Slices: An Innovative 3D Organotypic Model to Study Epicardial Cell Physiology and Activation. NPJ Regenerative Medicine, 7, Article No. 7. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Rao, K.S. and Spees, J.L. (2017) Harnessing Epicardial Pro-genitor Cells and Their Derivatives for Rescue and Repair of Cardiac Tissue after Myocardial Infarction. Current Mo-lecular Biology Reports, 3, 149-158. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Wang, Y.L., Yu, S.N., Shen, H.R., et al. (2021) Thymosin beta4 Released from Functionalized Self-Assembling Peptide Activates Epicardium and Enhances Repair of Infarcted Myo-cardium. Theranostics, 11, 4262-4280. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Smart, N., Risebro, C.A., Melville, A.A., et al. (2007) Thymosin beta-4 Is Essential for Coronary Vessel Development and Promotes Neovascularization via Adult Epicardium. Annals of the New York Academy of Sciences, 1112, 171-188. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Rao, K.S., Kloppenburg, J.E., Marquis, T., et al. (2022) CTGF-D4 Amplifies LRP6 Signaling to Promote Grafts of Adult Epicardial-Derived Cells That Improve Cardiac Function after Myocardial Infarction. Stem Cells, 40, 204-214. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Duan, J., Gherghe, C., Liu, D., et al. (2012) Wnt1/Betacatenin Injury Response Activates the Epicardium and Cardiac Fibroblasts to Promote Cardiac Repair. EMBO Journal, 31, 429-442. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Picelli, S., Bjorklund, A.K., Faridani, O.R., et al. (2013) Smart-seq2 for Sensitive Full-Length Transcriptome Profiling in Single Cells. Nature Methods, 10, 1096-1098. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Fan, J., Salathia, N., Liu, R., et al. (2016) Characterizing Transcriptional Heterogeneity through Pathway and Gene Set Overdispersion Analysis. Nature Methods, 13, 241-244. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Weinberger, M., Simões, F.C., Patient, R., et al. (2020) Functional Het-erogeneity within the Developing Zebrafish Epicardium. Developmental Cell, 52, 574-590. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Wang, J., Cao, J., Dickson, A.L., et al. (2015) Epicardial Re-generation Is Guided by Cardiac Outflow Tract and Hedgehog Signalling. Nature, 522, 226-230. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Terriente, J., Gerety, S.S., Watanabe-Asaka, T., et al. (2012) Signalling from Hindbrain Boundaries Regulates Neuronal Clustering That Patterns Neurogenesis. Development, 139, 2978-2987. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Rodriguez-Meira, A., Buck, G., Clark, S.A., et al. (2019) Unravelling Intratumoral Heterogeneity through High-Sensitivity Single-Cell Mutational Analysis and Parallel RNA Sequencing. Molecular Cell, 73, 1292-1305. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Huang, G.N., Thatcher, J.E., McAnally, J., et al. (2012) C/EBP Transcription Factors Mediate Epicardial Activation during Heart Development and Injury. Science, 338, 1599-1603. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Bertrand, J.Y., Kim, A.D., Teng, S., et al. (2008) CD41+ cmyb+ Precursors Colonize the Zebrafish Pronephros by a Novel Migration Route to Initiate Adult Hematopoiesis. Development, 135, 1853-1862. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Valentin, G., Haas, P. and Gilmour, D. (2007) The Chemokine SDF1a Coordinates Tissue Migration through the Spatially Restricted Activation of Cxcr7 and Cxcr4b. Current Biology, 17, 1026-1031. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Euler, G. (2015) Good and Bad Sides of TGFβ-Signaling in Myo-cardial Infarction. Frontiers in Physiology, 6, 66. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Dronkers, E., Wauters, M., Goumans, M.J., et al. (2020) Epicardial TGFbeta and BMP Signaling in Cardiac Regeneration: What Lesson Can We Learn from the Developing Heart? Biomolecules, 10, Article No. 404. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Wu, J., Jackson-Weaver, O. and Xu, J. (2018) The TGFbeta Super-family in Cardiac Dysfunction. Acta Biochimica et Biophysica Sinica (Shanghai), 50, 323-335. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Robertson, I.B., Horiguchi, M., Zilberberg, L., et al. (2015) Latent TGF-β-Binding Proteins. Matrix Biology, 47, 44-53. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
陈玖玲. PDGFRβ信号通路调节心外膜功能及心脏再生的机制研究[D]: [博士学位论文]. 武汉: 华中科技大学, 2019.
|
|
[37]
|
Kim, J., Wu, Q., Zhang, Y., et al. (2010) PDGF Sig-naling Is Required for Epicardial Function and Blood Vessel Formation in Regenerating Zebrafish Hearts. Proceedings of the National Academy of Sciences of the United States of America, 107, 17206-17210. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Bruton, F.A., Kaveh, A., Ross-Stewart, K.M., et al. (2022) Mac-rophages Trigger Cardiomyocyte Proliferation by Increasing Epicardial Vegfaa Expression during Larval Zebrafish Heart Regeneration. Developmental Cell, 57, 1512-1528. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Lamouille, S., Xu, J. and Derynck, R. (2014) Molecular Mechanisms of Epithelial-Mesenchymal Transition. Nature Reviews Molecular Cell Biology, 15, 178-196. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Cavallero, S., Shen, H., Yi, C., et al. (2015) CXCL12 Signaling Is Essential for Maturation of the Ventricular Coronary Endothelial Plexus and Establishment of Functional Coronary Circulation. Developmental Cell, 33, 469-477. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Jackson-Weaver, O., Ungvijanpunya, N., Yuan, Y., et al. (2020) PRMT1-p53 Pathway Controls Epicardial EMT and Invasion. Cell Reports, 31, Article ID: 107739. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Guo, Z., Geng, M., Qin, L., et al. (2021) Epicardium-Derived Tbx18(+) CDCs Transplantation Improve Heart Function in Infarcted Mice. Frontiers in Cardiovascular Medicine, 8, Article ID: 744353. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Xie, Y., Lampinen, M., Takala, J., et al. (2020) Epicardial Trans-plantation of Atrial Appendage Micrograft Patch Salvages Myocardium after Infarction. The Journal of Heart and Lung Transplantation, 39, 707-718. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Del, C.C., Liaw, N.Y., Gunadasa-Rohling, M., et al. (2022) Regenerative Potential of Epicardium-Derived Extracellular Vesicles Mediated by Conserved miRNA Transfer. Car-diovascular Research, 118, 597-611. [Google Scholar] [CrossRef] [PubMed]
|