Frobenius扩张下的Gc-投射(内射)复形
Gc-Projective (Injective) Complex under Frobenius Extension
摘要: 本文利用类比归纳的方法,证明了Gc-投射(Gc-内射)复形是投射(内射)可解的,以及在Frobenius 扩张下,复形的Gc-投射性和内射性是保持的。进一步,得到了在Frobenius扩张下,复形的Gc-投射维数和内射维数是不变的。
Abstract: In this paper, by using the method of analogical induction, we prove that Gc-projective (Gc-injective) complexes are projectively (injectively) resolving and the Gc-projective (Gc-injective) properties of the complexes are preserved under the Frobenius exten-sion. Further, we obtain that Gc-Projective (Gc-injective) dimensions of the complexes are invariant under the Frobenius exteiLsion.
文章引用:徐启帆. Frobenius扩张下的Gc-投射(内射)复形[J]. 应用数学进展, 2022, 11(12): 9066-9071. https://doi.org/10.12677/AAM.2022.1112956

参考文献

[1] Holm, H. and Wliite, D. (2007) Foxby Exiuivaleuce ov-er Associative Rings. Kyoto Journal of Mathematics. 47. 781-808. [Google Scholar] [CrossRef
[2] Wliite, D. (2010) Goreusteiu Projective Dimension with Respect to a Seinidualizing Module. Joumul of Commutative AUjebiu^ 2, 111-137. [Google Scholar] [CrossRef
[3] Yang. C.H. and Li, L. (2012) Gorenstein Injective and Projective Complexes with Respect to a Semidualiziug Module. Communication in Algebra, 40, 3352-3364. [Google Scholar] [CrossRef
[4] 杨春花.复形的结构与模的Gorenstdii维数[D]:[博士学位论文].南京:南京大学,2011.
[5] Zhao, Z.B. (2022) -Projectivity and Injectivity under Frobenius Extensions. Communica¬tions in Algebra, 50. 5155-5170.
[6] Huaiig, C.L. (2012) -Projective, Injective and Flat Modules under Change of Rings. Joumul of Algebra and Its Applications, 11. Article ED: 1250032. [Google Scholar] [CrossRef
[7] Holm, H. (2004) GoreiLStein Homological Dimensions. Journal of Pure and Applied Ahjebiu, 189. 167-193.
https://doi.org/10.1016/j,jpaa.2003.11.007
[8] Auslander, M. and Bridger, M. (1969) Stable Module Theory. In: Memoirs of the American Mathematical Society, No. 94, American Mathematical Society, ProvidenceN Rhode Lslaiid. [Google Scholar] [CrossRef