|
[1]
|
Mizushima, N., et al. (2008) Autophagy Fights Disease through Cellular Self-Digestion. Nature, 451, 1069-1075. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Levine, B. and Kroemer, G. (2008) Autophagy in the Pathogenesis of Disease. Cell, 132, 27-42. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Janji, B., et al. (2016) The Multifaceted Role of Autophagy in Tu-mor Evasion from Immune Surveillance. Oncotarget, 7, 17591-17607. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Amaravadi, R., Kimmelman, A.C. and White, E. (2016) Recent In-sights into the Function of Autophagy in Cancer. Genes & Development, 30, 1913-1930. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Wang, X., et al. (2021) Progress of Breast Cancer Basic Research in China. International Journal of Biological Sciences, 17, 2069-2079. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Manjunath, M. and Choudhary, B. (2021) Triple-Negative Breast Cancer: A Run-Through of Features, Classification and Current Therapies. Oncology Letters, 22, 512. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Behrends, C., et al. (2010) Network Organization of the Human Au-tophagy System. Nature, 466, 68-76. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Rabinowitz, J.D. and White, E. (2010) Autophagy and Metabolism. Sci-ence, 330, 1344-1348. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Bai, Y., et al. (2019) PDIA6 Modulates Apoptosis and Autophagy of Non-Small Cell Lung Cancer Cells via the MAP4K1/JNK Signaling Pathway. EbioMedicine, 42, 311-325. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Martini-Stoica, H., et al. (2016) The Autophagy-Lysosomal Pathway in Neurodegeneration: A TFEB Perspective. Trends in Neurosciences, 39, 221-234. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Matsuzawa-Ishimoto, Y., Hwang, S. and Cadwell, K. (2018) Au-tophagy and Inflammation. Annual Review of Immunology, 36, 73-101. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Kaushik, S., et al. (2021) Autophagy and the Hall-marks of Aging. Ageing Research Reviews, 72, Article ID: 101468. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Galluzzi, L., et al. (2017) Molecular Definitions of Autophagy and Related Processes. The EMBO Journal, 36, 1811- 1836. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Yorimitsu, T. and Klionsky, D.J. (2005) Autophagy: Molecular Machinery for Self-Eating. Cell Death & Differentiation, 12, 1542-1552. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Glick, D., Barth, S. and Macleod, K.F. (2010) Autophagy: Cellular and Molecular Mechanisms. The Journal of Pathology, 221, 3-12. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Saftig, P., Beertsen, W. and Eskelinen, E.L. (2008) LAMP-2: A Control Step for Phagosome and Autophagosome Maturation. Autophagy, 4, 510-512. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Liang, X.H., et al. (1999) Induction of Autophagy and Inhibition of Tumor-igenesis by Beclin 1. Nature, 402, 672-676. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Laddha, S.V., et al. (2014) Mutational Landscape of the Essential Autophagy Gene BECN1 in Human Cancers. Molecular Cancer Research, 12, 485-490. [Google Scholar] [CrossRef]
|
|
[19]
|
Loibl, S., et al. (2021) Breast Cancer. The Lancet, 397, 1750-1769. [Google Scholar] [CrossRef]
|
|
[20]
|
Singh, D.D. and Yadav, D.K. (2021) TNBC: Potential Targeting of Multiple Receptors for a Therapeutic Breakthrough, Nanomedicine, and Immunotherapy. Biomedi-cines, 9, Article No. 876. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
So, J.Y., et al. (2022) Triple Negative Breast Cancer (TNBC): Non-Genetic Tumor Heterogeneity and Immune Microenvironment: Emerging Treatment Op-tions. Pharmacology & Therapeutics, 237, Article ID: 108253. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Overgaard, J., et al. (2000) TP53 Mutation Is an Independ-ent Prognostic Marker for Poor Outcome in Both Node- Negative and Node-Positive Breast Cancer. Acta Oncologica, 39, 327-333. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Chang, S.J., et al. (2016) Decreased Expression of Autophagy Protein LC3 and Stemness (CD44+/CD24-/Low) Indicate Poor Prognosis in Triple-Negative Breast Cancer. Human Pa-thology, 48, 48-55. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Zhao, H., et al. (2013) High Expression of LC3B Is Associat-ed with Progression and Poor Outcome in Triple-Negative Breast Cancer. Medical Oncologist, 30, 475. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Ünal, T.D., et al. (2021) Thymoquinone Inhibits Proliferation and Migration of MDA-MB-231 Triple Negative Breast Cancer Cells by Suppressing Autophagy, Beclin-1 and LC3. An-ti-Cancer Agents in Medicinal Chemistry, 21, 355-364. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Lu, H.Y., et al. (2019) Hydroxytyrosol and Oleuro-pein Inhibit Migration and Invasion of MDA-MB-231 Triple-Negative Breast Cancer Cell via Induction of Autophagy. Anti-Cancer Agents in Medicinal Chemistry, 19, 1983-1990. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Hamurcu, Z., et al. (2018) Targeting LC3 and Beclin-1 Autophagy Genes Suppresses Proliferation, Survival, Migration and Invasion by Inhibition of Cyclin-D1 and uPAR/Integrin β1/Src Signaling in Triple Negative Breast Cancer Cells. Journal of Cancer Research and Clinical On-cology, 144, 415-430. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Pasculli, B., Barbano, R. and Parrella, P. (2018) Epigenetics of Breast Cancer: Biology and Clinical Implication in the Era of Precision Medicine. Seminars in Cancer Biology, 51, 22-35. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Jovanovic, J., et al. (2010) The Epigenetics of Breast Cancer. Molecular Oncology, 4, 242-254. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Fang, F., et al. (2011) Breast Cancer Methylomes Establish an Epigenomic Foundation for Metastasis. Science Translational Medicine, 3, 75ra25. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Wong, K.K. (2021) DNMT1: A Key Drug Target in Tri-ple-Negative Breast Cancer. Seminars in Cancer Biology, 72, 198-213. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Hamurcu, Z., et al. (2019) FOXM1 Plays a Role in Autoph-agy by Transcriptionally Regulating Beclin-1 and LC3 Genes in Human Triple-Negative Breast Cancer Cells. Journal of Molecular Medicine (Berlin), 97, 491-508. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Xia, M., et al. (2021) Noncoding RNAs in Triple Negative Breast Cancer: Mechanisms for Chemoresistance. Cancer Letters, 523, 100-110. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Li, P.P., et al. (2021) LncRNA OTUD6B-AS1 Promotes Paclitaxel Resistance in Triple Negative Breast Cancer by Regulation of miR-26a-5p/MTDH Pathway-Mediated Au-tophagy and Genomic Instability. Aging (Albany NY), 13, 24171-24191. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Zheng, X., et al. (2020) The circRNA circSEPT9 Mediated by E2F1 and EIF4A3 Facilitates the Carcinogenesis and Development of Triple-Negative Breast Cancer. Molecular Cancer, 19, 73. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Ferreira, P.M.P., et al. (2021) Chloroquine and Hydroxychloro-quine in Antitumor Therapies Based on Autophagy-Related Mechanisms. Pharmacological Research, 168, Article ID: 105582. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Hu, J., et al. (2019) ROS-Mediated Activation and Mito-chondrial Translocation of CaMKII Contributes to Drp1-Depen- dent Mitochondrial Fission and Apoptosis in Tri-ple-Negative Breast Cancer Cells by Isorhamnetin and Chloroquine. Journal of Experimental & Clinical Cancer Re-search, 38, 225. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Fleisher, B., et al. (2019) Chloroquine Sensitizes MDA-MB-231 Cells to Osimertinib through Autophagy-Apoptosis Crosstalk Pathway. Breast Cancer (Dove Med Press), 11, 231-241. [Google Scholar] [CrossRef]
|
|
[39]
|
Liu, Z., et al. (2017) Autophagy Inhibitor Facili-tates Gefitinib Sensitivity in Vitro and in Vivo by Activating Mitochondrial Apoptosis in Triple Negative Breast Cancer. PLOS ONE, 12, e0177694. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Ren, H., et al. (2020) Design, Synthesis, and Characterization of an Orally Active Dual-Specific ULK1/2 Autophagy Inhibitor that Synergizes with the PARP Inhibitor Olaparib for the Treatment of Triple-Negative Breast Cancer. Journal of Medicinal Chemistry, 63, 14609-14625. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Wang, H., et al. (2022) Nanoprodrug Ratiometrically Integrat-ing Autophagy Inhibitor and Genotoxic Agent for Treatment of Triple-Negative Breast Cancer. Biomaterials, 283, Article ID: 121458. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Wu, M., et al. (2022) OSW-1 Induces Apoptosis and Cy-to-Protective Autophagy, and Synergizes with Chemotherapy on Triple Negative Breast Cancer Metastasis. Cellular On-cology (Dordrecht), 45, 1255-1275. [Google Scholar] [CrossRef]
|
|
[43]
|
Zhen, Y., et al. (2020) Flubendazole Elicits Anti-Cancer Effects via Targeting EVA1A-Modulated Autophagy and Apoptosis in Triple-Negative Breast Cancer. Theranostics, 10, 8080-8097. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Li, Q.W., et al. (2021) SANT, a Novel Chinese Herbal Monomer Combi-nation, Decreasing Tumor Growth and Angiogenesis via Modulating Autophagy in Heparanase Overexpressed Tri-ple-Negative Breast Cancer. Journal of Ethnopharmacology, 266, Article ID: 113430. [Google Scholar] [CrossRef] [PubMed]
|