|
[1]
|
中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2020年版) (上) [J]. 中国实用内科杂志, 2021, 41(8): 668-695.
|
|
[2]
|
中华医学会内分泌学分会, 中国成人2型糖尿病降压治疗目标研究工作组. 2型糖尿病患者认知功能障碍防治的中国专家共识[J]. 中华内分泌代谢杂志, 2022, 38(6): 453-464.
|
|
[3]
|
Arnold, S.E., Arvanitakis, Z., Macauley-Rambach, S.L., et al. (2018) Brain Insulin Resistance in Type 2 Diabetes and Alzheimer Disease: Concepts and Conundrums. Nature Reviews Neurology, 14, 168-181. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Simental-Mendía, L.E., Rodríguez-Morán, M. and Guerre-ro-Romero, F. (2008) The Product of Fasting Glucose and Triglycerides as Surrogate for Identifying Insulin Resistance in Apparently Healthy Subjects. Metabolic Syndrome and Related Disorders, 6, 299-304. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Guerrero-Romero, F., Simental-Mendía, L.E., González-Ortiz, M., et al. (2010) The Product of Triglycerides and Glucose, a Simple Measure of Insulin Sensitivity. Comparison with the Euglycemic-Hyperinsulinemic Clamp. The Journal of Clinical Endocrinology & Metabolism, 95, 3347-3351. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Lim, J., Kim, J., Koo, S.H. and Kwon, G.C. (2019) Comparison of Tri-glyceride Glucose Index, and Related Parameters to Predict Insulin Resistance in Korean Adults: An Analysis of the 2007-2010 Korean National Health and Nutrition Examination Survey. PLOS ONE, 14, e0212963. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
de Cuevillas, B., Alvarez-Alvarez, I., Riezu-Boj, J.I., Na-vas-Carretero, S. and Martinez, J.A. (2021) The Hypertriglyceridemic-Waist Phenotype as a Valuable and Integrative Mirror of Metabolic Syndrome Traits. Scientific Reports, 11, Article No. 21859. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Huanan, C., Sangsang, L., Amoah, A.N., et al. (2020) Relation-ship between Triglyceride Glucose Index and the Incidence of Non-Alcoholic Fatty Liver Disease in the Elderly: A Ret-rospective Cohort Study in China. BMJ Open, 10, e039804. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Jiang, T., Zhou, Y., Zhang, D., et al. (2021) Association of Serum Interleukin-34 and Insulin Resistance with Cognitive Impairment in Patients with Cerebral Small Vessel Disease. Current Neurovascular Research, 18, 446-455. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Yan, Y., Hu, F., Wu, W., Ma, R. and Huang, H. (2017) Expression Characteristics of Proteins of IGF-1R, p-Akt, and Survivin in Papillary Thyroid Carcinoma Patients with Type 2 Diabetes Mellitus. Medicine, 96, e6393. [Google Scholar] [CrossRef]
|
|
[11]
|
Arwert, L.I., Veltman, D.J., Deijen, J.B., et al. (2005) Memory Performance and the Growth Hormone/Insulin-Like Growth Factor Axis in Elderly: A Positron Emission To-mography Study. Neuroendocrinology, 81, 31-40. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Zhang, D., Jiang, S. and Meng, H. (2015) Role of the Insulin-Like Growth Factor Type 1 Receptor in the Pathogenesis of Diabetic Encephalopathy. International Journal of Endocrinology, 2015, Article ID: 626019. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Planel, E., Tatebayashi, Y., Miyasaka, T., et al. (2007) Insulin Dysfunc-tion Induces in Vivo Tau Hyperphosphorylation through Distinct Mechanisms. Journal of Neuroscience, 27, 13635-13648. [Google Scholar] [CrossRef]
|
|
[14]
|
Cantley, J. (2014) The Control of Insulin Secretion by Adipokines: Current Evidence for Adipocyte-Beta Cell Endocrine Signalling in Metabolic Homeostasis. Mammalian Genome, 25, 442-454. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Ho, L., Qin, W., Pompl, P.N., et al. (2004) Diet-Induced Insulin Resistance Promotes Amyloidosis in a Transgenic Mouse Model of Alzheimer’s Disease. The FASEB Journal, 18, 902-904. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Correia, S.C., Santos, R.X., Carvalho, C., et al. (2012) Insulin Signaling, Glucose Metabolism and Mitochondria: Major Players in Alzheimer’s Disease and Diabetes Interrelation. Brain Research, 1441, 64-78. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Xie, L., Helmerhorst, E., Taddei, K., et al. (2002) Alzheimer’s β-Amyloid Peptides Compete for Insulin Binding to the Insulin Receptor. Journal of Neuroscience, 22, Article No. RC221. [Google Scholar] [CrossRef]
|
|
[18]
|
Peng, D., Pan, X., Cui, J., Ren, Y. and Zhang, J. (2013) Hyperphosphorylation of Tau Protein in Hippocampus of Central Insulin-Resistant Rats Is Associated with Cog-nitive Impairment. Cellular Physiology and Biochemistry, 32, 1417-1425. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Poitout, V. and Robertson, R.P. (2008) Glucolipotoxicity: Fuel Excess and Beta-Cell Dysfunction. Endocrine Reviews, 29, 351-366. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Butterfield, D.A., Di Domenico, F. and Barone, E. (2014) Elevated Risk of Type 2 Diabetes for Development of Alzheimer Disease: A Key Role for Oxidative Stress in Brain. Biochimica et Biophysica Acta, 1842, 1693-1706. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Parhofer, K.G. (2015) Interaction between Glucose and Lipid Metabolism: More than Diabetic Dyslipidemia. Diabetes & Metabolism Journal, 39, 353-362. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Briaud, I., Harmon, J.S., Kelpe, C.L., Segu, V.B.G. and Poitout, V. (2001) Lipotoxicity of the Pancreatic β-Cell Is Associated with Glucose-Dependent Esterification of Fatty Acids into Neutral Lipids. Diabetes, 50, 315-21. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Tran, D.Q., Erika, K.T., Kim, M.H. and Belsham, D.D. (2016) Di-et-Induced Cellular Neuroinflammation in the Hypothalamus: Mechanistic Insights from Investigation of Neurons and Microglia. Molecular and Cellular Endocrinology, 438, 18-26. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Nam, K.-W., Kwon, H.-M., Jeong, H.-Y., et al. (2020) High Tri-glyceride-Glucose Index Is Associated with Subclinical Cerebral Small Vessel Disease in a Healthy Population: A Cross-Sectional Study. Cardiovascular Diabetology, 19, Article No. 53. [Google Scholar] [CrossRef] [PubMed]
|