|
[1]
|
Alt, C. (2006) Ullmann’s Encyclopedia of Industrial Chemistry. Wiley, New York, 2345-2351.
|
|
[2]
|
Xu, M., Cai, J., Guo, J., et al. (2017) Technical and Economic Feasibility of the Isopropanol-Acetone-Hydrogen Chemical Heat Pump Based on a Lab-Scale Prototype. Energy, 139, 1030-1039. [Google Scholar] [CrossRef]
|
|
[3]
|
Jiang, G., Cumberland, T., Zang, J., et al. (2021) A Novel Design of High-Temperature Polymer Electrolyte Membrane Acetone Fuel Cell. Sensors and Actuators, B: Chemical, 329, Article ID: 129006. [Google Scholar] [CrossRef]
|
|
[4]
|
Kratzel, A., Todt, D., Philip, V., et al. (2020) Efficient Inac-tivation of SARS-CoV-2 by WHO-Recommended Hand Rub Formulations and Alcohols. [Google Scholar] [CrossRef]
|
|
[5]
|
Bing, R.G., Straub, C.T., Sullis, D.B., et al. (2022) Plant Biomass Fermentation by the Extreme Thermophile Caldicellulosiruptorbescii for Coproduction of Green Hydrogen and Acetone: Technoeconomic Analysis. Bioresource Technology, 348, Article ID: 126780. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Shirochenko, K.S., Safronov, A.D., Akhmetov, I.V. and Gubaydullin, I.M. (2019) Mathematical Modeling of a Fractionation Unit in the Production of Phenol and Acetone by Cumene Method. Journal of Physics: Conference Series, 1096, Article ID: 012191. [Google Scholar] [CrossRef]
|
|
[7]
|
Xu, Y., Chuang, K.T. and Sanger, A.R. (2002) Design of a Process for Production of Isopropyl Alcohol by Hydration of Propylene in a Catalytic Distillation Column. Chemical Engineering Research and Design, 80, 686-694. [Google Scholar] [CrossRef]
|
|
[8]
|
Özkar, S. and Finke, R.G. (2005) Iridium (0) Nanocluster, Acid-Assisted Catalysis of Neat Acetone Hydrogenation at Room Temperature: Exceptional Activity, Catalyst Lifetime, and Selectivity at Complete Conversion, Journal of the American Chemical Society, 127, 4800-4808. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Shutkina, O.V., Ponomareva, O.A., Kots, P.A. and Ivanova, I.I. (2013) Selective Hydrogenation of Acetone in the Presence of Benzene. Catalysis Today, 218, 30-34. [Google Scholar] [CrossRef]
|
|
[10]
|
Cunningham, J., Hickey, J.N. and Wang, Z. (1996) Activities and Selectivities of Copper/Metal-Oxide Catalysts at Temperatures Relevant to Chemical Heat-Pumps Based on Isopropanol/Acetone Interconversions. International Journal of Energy Research, 20, 763-766. [Google Scholar] [CrossRef]
|
|
[11]
|
Gandia, L.M., Di-az, A. and Montes, M. (1995) Selectivity in the High-Temperature Hydrogenation of Acetone with Silica-Supported Nickel and Cobalt Catalysts. Journal of Catalysis, 157, 461-471. [Google Scholar] [CrossRef]
|
|
[12]
|
Fauzia, V., Karmelia, R., Roza, L. and Hafizah, M.A.E. (2019) Gold Mesocauliflowers as Catalyst for the Hydrogenation of Acetone to Isopropanol. Materials Research Express, 6, Article ID: 084002. [Google Scholar] [CrossRef]
|
|
[13]
|
Balouch, A., Umar, A.A., Shah, A.A., Salleh, M.M. and Oyama, M. (2013) Efficient Heterogeneous Catalytic Hydrogenation of Acetone to Isopropanol on Semihollow and Porous Palladium Nanocatalyst. ACS Applied Materials & Interfaces, 5, 9843-9849. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Sen, B. and Vannice, M.A. (1988) Metal-Support Effects on Acetone Hydrogenation over Platinum Catalysts. Journal of Catalysis, 113, 52-71. [Google Scholar] [CrossRef]
|
|
[15]
|
Fuente, A.M., Pulgar, G., González, F., Pesquera, C. and Blanco, C. (2001) Activated Carbon Supported Pt Catalysts: Effect of Support Texture and Metal Precursor on Ac-tivity of Acetone Hydrogenation. Applied Catalysis A: General, 208, 35-46. [Google Scholar] [CrossRef]
|
|
[16]
|
Fu, Q., Li, W., Yao, Y., et al. (2010) Interface-Confined Ferrous Centers for Catalytic Oxidation. Science, 328, 1141-1144. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Zhao, G., Yang, F., Chen, Z., et al. (2017) Metal/Oxide Interfa-cial Effects on the Selective Oxidation of Primary Alcohols. Nature Communications, 8, Article No. 14039. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Liu, K., Zhao, Y., Wang, J., et al. (2020) Ag-CoO Nanocomposites for Gas-Phase Oxidation of Alcohols to Aldehydes and Ketones: Intensified O2 Activation at Ag-CoO Interfacial Sites. Catalysis Science & Technology, 10, 8445-8457. [Google Scholar] [CrossRef]
|
|
[19]
|
Chen, A., Yu, X., Zhou, Y., et al. (2019) Structure of the Catalyt-ically Active Copper-Ceria Interfacial Perimeter. Nature Catalysis, 2, 334-341. [Google Scholar] [CrossRef]
|
|
[20]
|
Zhang, T., Wang, W., Gu, F., et al. (2022) Enhancing the Low Temperature CO2 Methanation over Ni/La-CeO2 Catalyst: The Effects of Surface Oxygen Vacancy and Basic Site on the Catalytic Performance. Applied Catalysis B: Environmental, 312, Article ID: 121385. [Google Scholar] [CrossRef]
|
|
[21]
|
Rui, N., Wang, Z., Sun, K., et al. (2017) CO2 Hydrogenation to Methanol over Pd/In2O3: Effects of Pd and Oxygen Vacancy. Applied Catalysis B: Environmental, 218, 488-497. [Google Scholar] [CrossRef]
|
|
[22]
|
Xue, Y., Yao, R., Li, J., et al. (2017) Efficient Pt-FeOx/TiO2@SBA-15 Catalysts for Selective Hydrogenation of Cinnamaldehyde to Cinnamyl Alcohol. Catalysis Science & Technology, 7, 6112-6123. [Google Scholar] [CrossRef]
|
|
[23]
|
Ji, Y., Wu, Y., Zhao, G., et al. (2015) Porous Bimetallic Pt-Fe Nanocatalysts for Highly Efficient Hydrogenation of Acetone. Nano Research, 8, 2706-2713. [Google Scholar] [CrossRef]
|
|
[24]
|
Yang, Q., Gao, D., Li, C., et al. (2022) Deposition of Pt Clusters onto MOFs-Derived CeO2 by ALD for Selective Hydrogenation of Furfural. Fuel, 311, Article ID: 122584. [Google Scholar] [CrossRef]
|
|
[25]
|
Zhu, L., Lu, J., Chen, P., et al. (2012) A Comparative Study on Pt/CeO2 and Pt/ZrO2 Catalysts for Crotonaldehyde Hydrogenation. Journal of Molecular Catalysis A: Chemical, 361-362, 52-57. [Google Scholar] [CrossRef]
|
|
[26]
|
Shen, M., Zhao, G., Nie, Q., et al. (2021) Ni-Foam-Structured Ni-Al2O3 Ensemble as an Efficient Catalyst for Gas-Phase Acetone Hydrogenation to Isopro-panol. ACS Applied Materials & Interfaces, 13, 28334-28347. [Google Scholar] [CrossRef] [PubMed]
|