|
[1]
|
Landin-Malt, A., Benhaddou, A., Zider, A. and Flagiello, D. (2016) An Evolutionary, Structural and Functional Over-view of the Mammalian TEAD1 and TEAD2 Transcription Factors. Gene, 591, 292-303. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Mahoney, W., Hong, J.-H., Yaffe, M. and Farrance, I. (2005) The Transcriptional Co-Activator TAZ Interacts Differentially with Transcriptional Enhancer Factor-1 (TEF-1) Family Mem-bers. Biochemical Journal, 388, 217-225. [Google Scholar] [CrossRef]
|
|
[3]
|
Yasunami, M., Suzuki, K., Houtani, T., Sugimoto, T. and Ohkubo, H. (1995) Molecular Characterization of cDNA Encoding a Novel Protein Related to Transcriptional Enhancer Factor-1 from Neural Precursor Cells. Journal of Biological Chemistry, 270, 18649-18654. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Zhang, H., Liu, C.Y., Zha, Z.Y., et al. (2009) TEAD Transcription Factors Mediate the Function of TAZ in Cell Growth and Epithelial-Mesenchymal Transition. Journal of Biological Chemistry, 284, 13355-13362. [Google Scholar] [CrossRef]
|
|
[5]
|
Sawada, A., Kiyonari, H., Ukita, K., et al. (2008) Redundant Roles of Tead1 and Tead2 in Notochord Development and the Regulation of Cell Proliferation and Survival. Molecular and Cellular Biology, 28, 3177-3189. [Google Scholar] [CrossRef]
|
|
[6]
|
Tian, W., Yu, J.Z., Tomchick, D.R., Pan, D.J. and Luo, X.L. (2010) Structural and Functional Analysis of the YAP-Binding Domain of Human TEAD2. Pan African Medical Journal, 107, 7293-7298. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Vassilev, A., Kaneko, K.J., Shu, H.J., Zhao, Y.M. and DePamphilis, M.L. (2001) TEAD/TEF Transcription Factors Utilize the Activation Domain of YAP65, a Src/Yes-Associated Protein Localized in the Cytoplasm. Genes & Development, 15, 1229-1241. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Ota, M. and Sasaki, H. (2008) Mammalian Tead Proteins Regulate Cell Proliferation and Contact Inhibition as Transcriptional Mediators of Hippo Signaling. Development, 135, 4059-4069. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Diepenbruck, M., Waldmeier, L., Ivanek, R., et al. (2014) Tead2 Expres-sion Levels Control the Subcellular Distribution of Yap and Taz, Zyxin Expression and Epithelial-Mesenchymal Transi-tion. Journal of Cell Science, 127, 1523- 1536. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Wang, Y.L., Li, F.C., Ma, D.D., et al. (2019) MicroRNA608 Sensitizes Nonsmall Cell Lung Cancer Cells to Cisplatin by Targeting TEAD2. Mo-lecular Medicine Reports, 20, 3519-3526. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Jacquemin, P., Hwang, J.-J., Martial, J.A., Dollá, P. and Davidson, I. (1996) A Novel Family of Developmentally Regulated Mammalian Tran-scription Factors Containing the TEA/ATTS DNA Binding Domain. Journal of Biological Chemistry, 271, 21775-21785. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Kaneko, K.J. and DePamphilis, M.L. (2015) Regulation of Gene Expression at the Beginning of Mammalian Development and the TEAD Family of Transcription Factors. Developmental Genetics, 22, 43-55. [Google Scholar] [CrossRef]
|
|
[13]
|
Thiery, J.P., Acloque, H., Huang, R. and Angela Nieto, M. (2009) Epithelial-Mesenchymal Transitions in Development and Disease. Cell, 139, 871-890. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Joo, J.S., Cho, S.Y., Rou, W.S., et al. (2020) TEAD2 as a Novel Prognostic Factor for Hepatocellular Carcinoma. Oncology Reports, 43, 1785-1796. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Zhao, B., Ye, X., Yu, J.D., et al. (2008) TEAD Mediates YAP-Dependent Gene Induction and Growth Control. Genes & Development, 22, 1962-1971. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Lai, D., Ho, K.C., Hao, Y. and Yang, X. (2011) Taxol Resistance in Breast Cancer Cells Is Mediated by the Hippo Pathway Component TAZ and Its Downstream Transcriptional Targets Cyr61 and CTGF. Cancer Research, 71, 2728- 2738. [Google Scholar] [CrossRef]
|
|
[17]
|
Lei, Q.Y., Zhang, H., Zhao, B., et al. (2008) TAZ Promotes Cell Proliferation and Epithelial-Mesenchymal Transition and Is Inhibited by the Hippo Pathway. Molecular and Cellular Biology, 28, 2426-2436. [Google Scholar] [CrossRef]
|
|
[18]
|
Guo, C., Wang, X.T. and Liang, L.F. (2015) LATS2-Mediated YAP1 Phosphorylation Is Involved in HCC Tumorigenesis. International Journal of Clinical & Experimental Pathology, 8, 1690-1697.
|
|
[19]
|
Guo, J.W., Yan, W., Yang, L.J., et al. (2016) Repression of YAP by NCTD Disrupts NSCLC Pro-gression. Oncotarget, 8, 2307-2319. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Lamar, J.M., Stern, P., Liu, H., et al. (2012) The Hippo Pathway Target, YAP, Promotes Metastasis through Its TEAD- Interaction Domain. Proceed-ings of the National Academy of Sciences of the United States of America, 109, E2441- E2450. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Chan, S.W., Lim, C.J., Guo, K., et al. (2008) A Role for TAZ in Migration, Invasion, and Tumorigenesis of Breast Cancer Cells. Cancer Research, 68, 2592-2598. [Google Scholar] [CrossRef]
|
|
[22]
|
Ferlay, J., Soerjomataram, I., Dikshit, R., et al. (2015) Cancer Incidence and Mortality Worldwide: Sources, Methods and Major Patterns in GLOBOCAN 2012. International Journal of Cancer, 136, E359-E386. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Vincent, A., Herman, J., Schulick, R., Hruban, R. and Goggins, M. (2011) Pancreatic Cancer. Lancet, 378, 607-620. [Google Scholar] [CrossRef]
|
|
[24]
|
Drexler, R., Fahy, R., Kuchler, M., et al. (2021) Association of Subcellular Localization of TEAD Transcription Factors with Outcome and Progression in Pancreatic Ductal Adeno-carcinoma. Pancreatology, 21, 170-179. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Liu, Y., Wang, G., Yang, Y., et al. (2016) Increased TEAD4 Ex-pression and Nuclear Localization in Colorectal Cancer Promote Epithelial-Mesenchymal Transition and Metastasis in a YAP-Independent Manner. Oncogene, 35, 2789-2800. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Li, C.L., Wang, S.Y., Xing, Z., et al. (2017) A ROR1-HER3-lncRNA Signalling Axis Modulates the Hippo-YAP Pathway to Regulate Bone Metastasis. Nature Cell Biology, 19, 106-119. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Harvey, K.F., Zhang, X. and Thomas, D. (2013) The Hippo Pathway and Human Cancer. Nature Reviews Cancer, 13, 246-257. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Imai, K. and Yamamo-to, H. (2008) Carcinogenesis and Microsatellite Instability: The Interrelationship between Genetics and Epigenetics. Car-cinogenesis, 29, 673-680. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Huh, H.D., Dong, H.K., Jeong, H.-S. and Park, H.W. (2019) Regulation of TEAD Transcription Factors in Cancer Biology. Cells, 8, Article No. 600. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Overholtzer, M., Zhang, J.M., Smolen, G.A., et al. (2006) Transforming Properties of YAP, a Candidate Oncogene on the Chromosome 11q22 Amplicon. Proceedings of the National Academy of Sciences of the United States of America, 103, 12405-12410. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Angela Nieto, M. (2011) The Ins and Outs of the Epithelial to Mesenchymal Transition in Health and Disease. Annual Review of Cell and Developmental Biology, 27, 347-376. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Chaffer, C.L. and Weinberg, R.A. (2011) A Perspec-tive on Cancer Cell Metastasis. Science, 331, 1559-1564. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Magee, J.A., Piskounova, E. and Morrison, S.J. (2012) Cancer Stem Cells: Impact, Heterogeneity, and Uncertainty. Cancer Cell, 21, 283-296. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Polyak, K. and Weinberg, R.A. (2009) Transitions between Epitheli-al and Mesenchymal States: Acquisition of Malignant and Stem Cell Traits. Nature Reviews Cancer, 9, 265-273. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Scheel, C. and Weinberg, R.A. (2012) Cancer Stem Cells and Epitheli-al-Mesenchymal Transition: Concepts and Molecular Links. Seminars in Cancer Biology, 22, 396-403. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Moreno-Bueno, G., Portillo, F. and Cano, A. (2008) Tran-scriptional Regulation of Cell Polarity in EMT and Cancer. Oncogene, 27, 6958-6969. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Harvey, K. and Tapon, N. (2007) The Salvador-Warts-Hippo Path-way—An Emerging Tumour-Suppressor Network. Nature Reviews Cancer, 7, 182-191. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Pan, D. (2007) Hippo Signaling in Organ Size Control. Genes & Develop-ment, 21, 886-897. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Saucedo, L.J. and Edgar, B.A. (2007) Filling out the Hippo Pathway. Nature Reviews Molecular Cell Biology, 8, 613-621. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Yu, F.-X., Zhao, B. and Guan, K.-L. (2015) Hippo Pathway in Organ Size Control, Tissue Homeostasis, and Cancer. Cell, 163, 811-828. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Zanconato, F., Cordenonsi, M. and Piccolo, S. (2016) YAP/TAZ at the Roots of Cancer. Cancer Cell, 29, 783-803. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Chen, D.H., Sun, Y.T., Wei, Y.K., et al. (2012) LIFR Is a Breast Cancer Metastasis Suppressor Upstream of the Hippo-YAP Pathway and a Prognostic Marker. Nature Medicine, 18, 1511-1517. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Kim, T., Hwang, D., Lee, D., et al. (2016) MRTF Potentiates TEAD-YAP Transcriptional Activity Causing Metastasis. The EMBO Journal, 36, 520-535. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Hiemer, S.E., Szymaniak, A.D. and Varelas, X. (2014) The Tran-scriptional Regulators TAZ and YAP Direct Transforming Growth Factor β-induced Tumorigenic Phenotypes in Breast Cancer Cells. Journal of Biological Chemistry, 289, 13461-13474. [Google Scholar] [CrossRef]
|
|
[45]
|
Pefani, D.-E., Pankova, D., Abraham, A., et al. (2016) TGF-β Tar-gets the Hippo Pathway Scaffold RASSF1A to Facilitate YAP/SMAD2 Nuclear Translocation. Molecular Cell, 63, 156-166. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Varelas, X., Sakuma, R., Samavarchi-Tehrani, P., et al. (2008) TAZ Controls Smad Nucleocytoplasmic Shuttling and Regulates Human Embryonic Stem-Cell Self-Renewal. Nature Cell Biology, 10, 837-848. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Azzolin, L., Zanconato, F., Bresolin, S., et al. (2012) Role of TAZ as Media-tor of Wnt Signaling. Cell, 151, 1443-1456. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Cai, J., Maitra, A., Anders, R.A., Taketo, M.M. and Pan, D. (2015) β-Catenin Destruction Complex-Independent Regulation of Hippo-YAP Signaling by APC in Intestinal Tumorigenesis. Genes & Development, 29, 1493-1506. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Lee, T.-F., Tseng, Y.-C., Chang, W.-C., et al. (2017) YAP1 Is Essen-tial for Tumor Growth and Is a Potential Therapeutic Target for EGFR-Dependent Lung Adenocarcinomas. Oncotarget, 8, 89539-89551. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Jiao, S., Wang, H., Shi, Z., et al. (2014) A Peptide Mimicking VGLL4 Function Acts as a YAP Antagonist Therapy against Gastric Cancer. Cancer cell, 25, 166-180. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Li, Z., Zhao, B., et al. (2010) Structural Insights into the YAP and TEAD Complex. Genes & Development, 24, 235-240. [Google Scholar] [CrossRef] [PubMed]
|